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ABSTRACT 

This article is dedicated to the study of the new class of distributions and one of its 

particular members. Based on the odd ratio of baseline distribution, we have developed the 

odd inverse Chen-G family of distributions. General properties of the suggested family of 

distributions are provided. Using Weibull distribution as a baseline distribution, we have 

introduced a member of the suggested family having reverse-j or increasing or inverted 

bathtub shaped hazard function. Some statistical properties of this suggested distribution 

are explored. The associated parameters of the new distribution are estimated through MLE 

method. To assess the estimation procedure, we have conducted a Monte Carlo simulation 

and found that even for small samples, biases and mean square errors decrease as the 

sample size increases. Two real datasets are considered for the application of the suggested 

distribution. Using some criteria for model selection and goodness of fit test statistics, we 

empirically proved that the proposed model performs better than some existing models 

under study. 

 

1. Introduction 

The modelling of datasets using statistical distributions is a common practice in investigating real-

world phenomena. Classical continuous parametric distributions such as Weibull, gamma, beta, log-

normal, and exponential have been extensively used for this purpose. However, these distributions 

may not always produce a reasonable fit when dealing with complex datasets. Researchers have been 

incessantly developing new models that generalize the existing ones to overcome this limitation. 

These latest developments often employ techniques such as exponentiation and the T-X approach to 

generate more flexible distributions. Recently, several families of distributions with odd ratio of the 

distribution function of base distribution have been proposed in the literature; some of them are the 

extended odd Weibull-G family Alizadeh et al., (2018), the Kumaraswamy-Odd Rayleigh-G (Falgore 

and Doguwa, 2020), odd generalized half logistic Weibull-G (Chipepa et al., 2020), transmuted odd 

log-logistic-G (Alizadeh et al., 2020), odd power generalized Weibull-G (Moakofi  

et al., 2021), exponentiated odd Weibull-Topp-Leone-G (Chamunorwa et al., 2021), Topp-Leone Odd 

Burr III-G (Moakofi et al., 2022), and odd Lomax generalized exponential distributions (Sapkota and 

Kumar, 2022). This article aims to introduce and discuss a new family of distributions and its 

applications in modelling complex datasets. In the field of reliability analysis, the Chen distribution 

has gained attention as a novel lifetime distribution with an increasing or a bathtub-shaped failure rate 

function. Chen (2000) introduced this distribution with non-negative parameters   and   and, which 

exhibits a unique behaviour in modelling reliability systems. The Chen distribution has a flexible 
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hazard function that can describe a wide variety of failure rates, making it a useful tool in modelling 

complex real-world problems. The PDF and CDF of Chen distribution are 
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respectively. Srivastava and Srivastava (2014) defined a new model by inverting the Chen distribution 

with increasing or bathtub shaped hazard rate function called the inverse Chen distribution with non-

negative parameters    and  . The CDF and PDF of the inverse Chen distribution are 
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respectively. Similarly ( Day et al., 2017), who introduced an exponentiated Chen distribution with an 

additional shape parameter to improve flexibility over the Chen distribution, El-Morshedy et al. 

(2020) utilized the Chen distribution to develop the odd Chen generator using the T-X approach 

proposed by (Alzaatreh et al., 2013) having two parameters. Anzagra et al. (2022) have also 

employed the T-X approach with W(x) as the odds ratio of the baseline CDF G(t) to propose a new 

family of two-parameter Chen-G distributions. This family has introduced three members, namely the 

Odd Chen Lomax, Odd Chen Burr-III, and Odd Chen Weibull, all exhibiting bathtub-shaped or 

increasing failure rate functions. The CDF and PDF of the Odd Chen G-family of distributions are 
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Another odd Chen distribution’s family was introduced by (Eliwa et al., 2020) by using exponentiated 

approach by adding one extra parameter to the odd Chen distribution’s family. One member of this 

family of distributions is studied using two data sets under classical approaches. 

The main aim of this article is to introduce a novel family of distributions known as the Odd inverse 

Chen-G family of distributions (OICh-G FD), which is capable of generating more robust compound 

probability distributions for modeling real-life datasets. The proposed family involves incorporating 

two additional parameters to the baseline distribution, providing an opportunity to capture the 

variability in the dataset such as skewness (left-right), symmetry, kurtosis (leptokurtosis-mesokurtic-

platykurtosis), and different shapes of failure rates (increasing, bathtub, J, inverse J, decreasing, and 

unimodal-bathtub). One member of the OICh-G FD that is particularly noteworthy is investigated 

using the Weibull as the base distribution, which is widely used in reliability theory and life-testing 

(Marshal and Olkin, 2007).  

2. Methodology 

Suppose that T be the lifetime of a system or a component follows the inverse Chen distribution, as 

defined in Equation (1.2). If we let X represent the odds ratio, then the risk that the system or 
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component will not be operational at time x can be expressed as ( ; ) / 1 ( ; )G x G x    . Here,  ;G x   

be the baseline CDF that has a parameter vector of (1 )p  . 
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where the odd ratio ( ; ) / 1 ( ; )G x G x     holds the conditions provided below:  
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2. ( ; ) / 1 ( ; )G x G x     is monotonically non-decreasing and differentiable. 

3. ( ; ) / 1 ( ; )G x G x c      as 0x  and ( ; ) / 1 ( ; )G x G x d      as x  . 

The T-X approach is utilized in proposing a new family of distributions known as the Odd Inverse 

Chen-G (OICh-G) family of distributions in this study. Let   be a vector of parameters of baseline 

CDF ( ; )G x   and then CDF ( )F x  of the OICh-G FD can be obtained as    
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where   and   are extra shape parameters. Differentiating the Equation (2.1), the PDF ( )f x  of the 

OICh-G FD is obtained as    
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  (2.2)                                                                                                                                            

The Reliability function of OICh-G FD is given as 

        

( ; )

1 ( ; )
exp 1 .( ) 1

G x

G x
eR x









 
 
 

  
    
   





   (2.3) 

The Hazard function of OICh-G FD is given as 
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2.3. The quantile function (QF)    

The quantile function is useful in statistical analysis and modelling, as it provides a way to estimate 

percentiles and other summary statistics of a probability distribution. Suppose ( )Q p  is the smallest 

value of X for which the probability that X is less than or equal to that value is at least p. The quantile 

function ( ; )Q p    of CDF ( ; )F x   of OICh-G FD can be obtained as 
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The random deviate function of OICh-G FD can be generated by 
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Using Equation (2.5), we can calculate the median, upper and lower quartile, quartile deviation (QD), 

coefficient of QD, skewness and kurtosis presented in Table 1. 

Table 1: Various measures based on quantiles. 
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3. Statistical Properties 

 

 3.1 Linear form of OICh-G FD 

One can derive useful linear expansions using the exponentiated approach. Specifically, the 

exponentiated-G with power parameter z > 0 has a CDF  
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These notations will be used in the following discussion. Exponentiated distributions have well-

known properties for a wide range of baseline CDF        for more information (see Nadarajah and 

Gupta, 2007; Lemonte et al., 2013). Now, using the following series, we can write the PDF of OICh-
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Appling exponential series expansion, the OICh-G  PDF defined  in Equation (2.2) becomes  
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Further expanding Equation (3.3) we get 
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Now Equation (3.4) can also be written in the simplest form    

 
  1 1

0 0 0

(( ; , , ) ( ; ); ) ; , 0.
j k

ijk

i j k

f x e Gv g x x
       

  
   

  

   (3.5) 

where,                           
     1 1 1 1

! !

i k ji

ijk

i j
v

i j k

 


     
  

 
.  

3.2 Moments 

The rth order non-central moment (
'

r ) for the OICh-G FD is 
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where ( )GQ w  is the baseline distribution’s quantile function. 

3.3 Moment Generating Function (MGF) 

The MGF ( ( )XM t ) for the OICh-G FD is 
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 (3.7)   

In terms of quantile function MGF can be written as   
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where ( ; )G x w  and ( )GQ w  is the baseline distribution’s quantile function. 

3.5 Entropy 

Entropy is a tool used to calculate a random variable's variation or unpredictability level. This concept 

has a wide variety of applications in diverse fields, such as econometrics, probability theory, 

engineering, and science in general. Entropy describes how much uncertainty or disorder there is in a 

particular system or situation. It is an important tool that helps us understand complex systems' 

behaviour and make predictions about their future states. Whether we are trying to analyze financial 

markets, design efficient machines, or model natural phenomena, entropy is an elemental concept that 

plays a critical role in numerous areas of research and development. 

i) Renyi’s Entropy 

It measures the randomness or uncertainty of a probability distribution and has applications in various 

fields like engineering, econometrics, and financial mathematics. One of the pioneers in introducing 

the concept of entropy was given by (Renyi, 1961) to quantify the variability of uncertainty. These 

measures can be used to evaluate the degree of randomness or predictability in a given system and 

calculated as 
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Applying Taylor’s series expansion  ( )f x
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Further expanding Equation (3.8) using generalized binomial series expansion. The expression for 

 ( ; , , )f x


    becomes  
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 (3.9) 

Now Equation (3.9) can also written in the simplest form  
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Putting  ( ; , , )f x
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    into the equation for ( )R X , Renyi’s Entropy for OICh-G FD becomes 
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ii) q-Entropy 

The q-entropy is given by  
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Putting  ( ; , , )f x
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   from Equation (3.10) into the expression for ( )H  ,  the q-Entropy for 

OICh-G FD becomes 

     
  

0 0 0

1
( ) log 1 ( ; )

1
( ; )

j k

ijk

i j k

H dxe Gg xx
     




  
   

   

 
   

  
  ; 0   and 

1.   

iii) Shannon’s Entropy 

It is a special case of the Rényi’s entropy when 1  .Shannon entropies can be defined as 

( log ( ))X E f x   . For the OICh G-FD one can compute using 
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4. Estimation Method 

 

4.1. Maximum Likelihood Estimation (MLE) 

The parameters of the OICh-G family are estimated in this sub-section using MLE. Let 

( , , )Tu     be ( 1)p  vector of parameter, the log density and total log-likelihood function 

respectively is given by 
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Differentiating Equation (4.1) gives the score function’s components ( ) , ,
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To determine the parameter estimators, Equations (4.2), (4.3), and (4.4) are set to zero, and numerical 

methods like the Newton-Raphson algorithms are used iteratively to solve them. The observed 

information matrix ( )J v  is essential for calculating the parameter’s confidence intervals. It can be 

computed as 
2

( )
l

J v
i j



 

for ( , , , )i j     whose elements can be evaluated numerically.  

4.2 Method of Least Square Estimation (LSE) 

Another estimation method was introduced by (Swain et al., 1988), named the ordinary LSEs and 

weighted LSEs to estimate the parameters of the OICh-G FD. Let (1) ( ),..., nx x  be order statistics of 

size n form ( ; , , )F x    . The LSE for the OICh-G FD can be obtained by minimizing  
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w. r. t. ,   and  . The least square estimates for the OICh-G FD is also become  
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Differentiating Equation (4.6) w. r. t. ,   and   we get  
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the LSEs. 

4.3 Cramer-von Mises Estimator (CVME) 

CVMEs are derived by measuring the discrepancy between the empirical CDF (based on the observed 

data) and the estimated CDF (based on the assumed theoretical distribution). By minimizing this 

difference, the CVMEs provide an estimate of the parameters that best fit the observed data. In the 

context of estimating the parameters of the CDF for the OICh-G FD, the CVMEs can be used to 

obtain estimates that are as accurate as possible while minimizing.  

.                 

2

( )

1

1 2 1
( ; , , ) ( ; , , )

12 2

n

i

i

i
C X F x

n n
     



 
   

 
 ,                                         

with respect to ,   and  . The CVMEs for the OICh-G FD is also become  
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  (4.7) 

Differentiating Equation (4.7) with respect to ,   and  we get 
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
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
 . By solving 0, 0

dC dC

d d 
   and 0

dC

d
 simultaneously will get the 

CVMEs. 

5. Special Distribution 

Generalization of several distributions can be made using the OICh-G FD. The special distributions 

odd inverse Chen Weibull (OIChW) is defined and some properties are presented in this sub-section. 

5.1 Odd inverse Chen Weibull (OIChW) Distribution 

The Weibull distribution is considered as base distribution whose CDF and PDF are 

 ;  1   xG x e  
   and   1;    ; 0, 0, 0xg x x e x  

         respectively. Now, the CDF 

and PDF of OIChW distribution are given by 

    ( ; , , , ) exp 1 exp 1 ; 0, 0, 0, , 0xF x e x


 
        

   
          

   
 (5.1) 

and      
( 1)

1( ; , , , ) 1 exp 1 exp 1 exp 1x x x xf x x e e e e
  

       
     

   
   

      
  

. (5.2) 

Using Equation (3.5) in Equation (5.2) becomes 
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where  ,k    is the PDF of Weibull distribution with parameters  1l    and   and 
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The reliability and hazard function, respectively is given by  
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Figure 1: Shapes of PDF (left) and HRF (right) of OIChW distribution. 

 

In Figure 1 (left), we can observe that the density plot of the OIChW distribution has different shapes, 

including decreasing, increasing, and right-skewed. On the other hand, Figure 1 (right) shows the 

HRF, which displays a varying pattern of failure rates for some specific values. The HRF can exhibit 

an upside-down bathtub shape, decreasing failure or increasing hazard rates. The QF and random 

deviate generation for the OIChW distribution, respectively is, given by 
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where u follows the (0,1)U distribution. 

 

5.2 Moments 

The rth order moment about origin (
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r ) for the OIChW distribution is 
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5.3 Moment Generating Function 

The MGF ( ( )XM t ) for the OIChW distribution is 
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 (5.5)    

5.4 Estimation 

The parameters of the OIChW distribution are computed using MLE method. To find MLEs, we have 

to maximize the Equation (5.6). The log density and total log-likelihood function, respectively, are 

given by 

 
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  (5.6) 

To obtain the MLEs, we have to differentiate the Equation (5.6) w. r. t. model parameters. However, 

these equations are non-linear, so we used a maxLik R package to solve them numerically. 

5.5 Simulation 

We used the maxLik R package created by (Henningsen and Toomet, 2011) to generate samples from 

the QF specified in Equation (5.3) for different parameter combinations of the OIChW distribution. 

The MLEs were then computed for each sample using the maxLik() function along with the BFGS 

algorithm, allowing us to investigate parameter estimation issues, as well as to estimate the bias size 

and direction (i.e., overestimation or underestimation) of the MLEs. We employed sample sizes 

ranging from 100 to 300 in increments of 50 in our simulation, which we repeated 1000 times to 

obtain estimates of the bias, and mean square error (MSE). We presented the results in Tables 2, 3, 

and 4, which report the MLEs bias and MSEs for each parameter and a 95% confidence interval (CI) 

with a lower bound (LB) and upper bound (UB) for each estimated parameter. Our findings showed 

that the bias and MSE decreased as the sample size increased for three different parameter 

combinations, indicating that the MLE method is asymptotically efficient, consistent, and follows the 

invariance property.   

Table 2: Biases, MSEs and CI for MLEs based on 1000 simulations for initials α=0.25, β=1.75, λ=0.5 

and θ=0.5. 

 Parameter Sample size (n) 

 
 

100 150 200 250 300 

Bias 

  0.2117 0.0931 0.0793 0.1103 0.0529 

  0.6508 0.6330 0.6369 0.8229 0.3303 

  -0.2387 -0.2158 -0.2094 -0.1749 -0.1729 

  1.4140 0.9978 0.8293 0.6587 0.559 

MSE 

  2.1769 0.5654 0.3349 0.4090 0.2554 

  20.312 16.4054 17.7771 18.6247 10.6431 

  0.1397 0.1237 0.1179 0.1040 0.0953 

  4.9501 2.7872 1.9411 1.4737 1.0188 

CI 

LB( ) 0.0085 0.0134 0.0152 0.0159 0.0173 

UB( ) 3.4537 2.2255 2.1076 2.1925 1.4935 

LB(  ) 0.1191 0.1372 0.1650 0.1707 0.2043 

UB(  ) 14.7268 15.1192 16.8771 17.1054 12.7369 

LB( ) 0.0000 0.0000 1.00E-04 2.00E-04 6.00E-04 

UB( ) 0.7373 0.7172 0.7138 0.7128 0.7043 

LB( ) 0.0743 0.0780 0.0734 0.0718 0.0956 

UB( ) 6.0498 4.7711 3.8901 3.7347 3.1214 
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Table 3: Biases, MSEs and CI for MLEs based on 1000 simulations for initials α=0.5, β=2.0, λ=0.25 

and θ=0.75. 

 Parameter Sample size (n) 

 
 

100 150 200 250 300 

Bias 

  0.3946 0.356 0.2942 0.1816 0.1129 

  0.5860 0.6921 0.8971 0.7535 0.7256 

  -0.0875 -0.0774 -0.0571 -0.0610 -0.0481 

  1.1440 0.8814 0.6567 0.6061 0.4717 

MSE 

  7.0368 6.0773 5.6126 2.2243 0.5989 

  19.2874 24.0471 21.6389 19.9637 15.8538 

  0.0512 0.0464 0.0443 0.0409 0.0382 

  3.2465 2.1677 1.4864 1.2650 0.8940 

CI 

LB( ) 0.0291 0.0334 0.0417 0.0426 0.0460 

UB( ) 6.7845 4.8032 3.9699 3.6678 2.8750 

LB(  ) 0.2379 0.2681 0.2991 0.3236 0.3553 

UB(  ) 16.7212 18.3535 18.2153 18.1154 15.5797 

LB( ) 0.0000 1.00E-04 2.00E-04 4.00E-04 8.00E-04 

UB( ) 0.6227 0.6227 0.6250 0.6255 0.6126 

LB( ) 0.1285 0.1138 0.1119 0.1175 0.1283 

UB( ) 4.9413 4.2594 3.9102 3.5058 3.1460 

 

Table 4: Biases, MSEs and CI for MLEs based on 1000 simulations for initials α=1.5, β=0.5, λ=0.75 

and θ=1.0. 

 Parameter Sample size (n) 

 
 

100 150 200 250 300 

Bias 

  0.7989 0.4707 0.4092 0.2202 0.3614 

  -0.0475 -0.0335 -0.0169 -0.0156 -0.0135 

  0.0476 -0.0176 0.0012 -0.0234 0.0196 

  0.2688 0.1881 0.1226 0.1051 0.0828 

MSE 

  15.1603 7.8033 5.074 2.6494 3.4775 

  0.0361 0.0255 0.0196 0.0151 0.0137 

  0.8774 0.4377 0.2960 0.2255 0.2488 

  0.3810 0.1975 0.1303 0.0928 0.083 

CI LB( ) 0.3156 0.3908 0.4552 0.5055 0.5467 
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UB( ) 12.8578 10.2843 7.5952 5.7343 6.9485 

LB(  ) 0.2197 0.2558 0.2775 0.3076 0.3147 

UB(  ) 0.8835 0.8743 0.8220 0.7668 0.7491 

LB( ) 0.0375 0.0825 0.1258 0.1723 0.2083 

UB( ) 3.0381 2.3742 2.0649 1.7631 1.8971 

LB( ) 0.5024 0.5302 0.5707 0.6376 0.6007 

UB( ) 2.5408 2.1062 1.8668 1.7187 1.6616 

 

5.6 Application 

Employing two real data sets, we demonstrate the application of the OIChW distribution in this sub-

section. The data sets employed for the application of the OIChW model are given as follows 

i) Data set 

Data set I  

The initial dataset pertains to the breaking stress (measured in GPa) of carbon fibers that are 50 mm in 

length. This particular dataset has been utilized in prior research studies conducted by (Nichols and 

Padgett, 2006) and (Cordeiro and Lemonte, 2011). The data itself is presented below. 

“0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 

2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 

2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 

3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90” 

Data set II  

The information provided is derived from a test that was conducted to study the lifespan of 59 

conductors (Nelson and Doganaksoy, 1995). The experiment was designed to accelerate the ageing 

process of the conductors, and the data obtained from it shows the time it took for each conductor to 

fail. The cause of failure was attributed to electro-migration, which is the movement of atoms within 

the conductor that disrupts the circuit. The failure times are expressed in hours, and there were no 

instances of censoring, meaning that all the observations were complete. 

“6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038, 5.381, 

6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 6.369, 

7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 

7.496, 4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071, 

10.491, 5.923.” 
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Figure 2:. Histogram and TTT plots of dataset-I. 

 

 

 
Figure 3: Histogram and TTT plots of dataset-II. 

 

ii) Model Analysis 

We have computed some well-known goodness-of-fit statistics to analyze data sets I and II, and the 

fitted models are evaluated using the log-likelihood value (-2logL), Akaike information criterion 

(AIC), Hannan-Quinn information criterion (HQIC), Anderson-Darling (AD), Kolmogrov-Smirnov 

(KS) with p-values and Cramer-von Mises (CVM). All the essential computations are carried out in 

R-software (Wickham and Grolemund, 2016). For the comparison of fitting capability, we have 

selected some models such as Weibull (Weib), Inverse Weibull (IWeib), Inverse Chen (IChen) 

(Srivastava and Srivastava, 2014), odd Chen Weibull (OChenW) (Anzagra et al., 2022), 
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exponentiated Chen (ExpChen) ( Day et al., 2017) and exponentiated exponential inverse Weibull 

(EEIW) (Chaudhary and Sapkota, 2021). 

We have presented the KS plots and probability-probability (PP) plots for both datasets in Figures 4 

and 5, and our analysis indicates that the suggested model can effectively fit the real datasets. The 

estimated values of the parameters (Par) and their associated standard errors (SE) for both datasets 

were presented in Tables 5 and 6, which were calculated using the MLE method. Additionally, Tables 

7 and 8 showcase model selection criteria, such as log-likelihood, HQIC, and AIC, and goodness of fit 

statistics, such as KS, AD, and CVM, for both data sets with p-values p(KS), p(CVM) and p(AD) 

respectively. Our observations show that the OIChW model has the least statistics compared to the 

Weib, IWeib, IChen, OChenW, ExpChen, and EEIW distributions, along with corresponding highest 

p-values, indicating that the OIChW distribution is more flexible and provides a good fit. 

Furthermore, we have provided graphical illustrations of the fitted models in Figures 6 and 7, which 

support our findings that the OIChW model outperforms the other candidate models. 

 

 
Figure 4: KS and PP plots of OIChW distribution (dataset-I). 

 

  
Figure 5: KS and PP plots of OIChW distribution (dataset-II). 
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Table 5: MLEs with SE (dataset-I) 

Model Par SE Par SE Par SE Par SE 

OICh  , , ,     1.9790 0.6375 0.0968 0.0453 0.7327 0.7552 2.7612 0.5550 

IWeib  ,   1.6480 0.1226 3.2263 0.4193 -- -- -- -- 

Weib  ,   3.0623 0.1149 3.4412 0.3305 -- -- -- -- 

IChen  ,   1.4331 0.1775 0.9370 0.0655 -- -- -- -- 

OChenW

 , , ,     
2.2404 0.3119 0.2452 0.0494 0.2464 0.0652 2.0315 0.3816 

ExpChen  , ,    2.3397 0.9614 0.8429 0.0968 0.1404 0.0762 -- -- 

EEIW  , , ,     11.4994 0.0013 0.7519 0.0013 100.1052 0.0128 0.5945 0.0732 

 

Table 6: MLEs with SE (dataset-II) 

Model Par SE Par SE Par SE Par SE 

OICh  , , ,     3.8348 2.5596 0.1748 0.2084 0.0639 0.1654 2.6237 0.7950 

IWeib  ,   3.0199 0.0000 223.5288 30.5772 -- -- -- -- 

Weib  ,   7.6130 0.2231 4.6988 0.4550 -- -- -- -- 

IChen  ,   212.6202 8.7208 2.9941 0.0795 -- -- -- -- 

OChenW

 , , ,     
6.3129 0.6961 0.2714 0.0543 0.2663 0.0762 2.6550 0.5419 

ExpChen  , ,    7.0224 4.0988 0.6005 0.0656 0.1006 0.0669 -- -- 

EEIW  , , ,     39.3196 0.3554 1.0246 0.0203 124.1549 4.1201 0.7968 0.1455 

 

 

 
Figure 6: Fitted PDF (left) and fitted CDF vs empirical CDF (right) (dataset-I). 
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Figure 7: Fitted PDF (left) and fitted CDF vs empirical CDF (right) (dataset-II). 

 

Table 7: Some model selection and goodness-of-fit statistics (dataset-I). 

Model -2logL AIC HQIC KS p(KS) CVM p(CV) AD p(AD) 

OIChW 169.8343 177.8343 181.2953 0.0684 0.9171 0.0482 0.8889 0.3108 0.9296 

IWeib 242.3898 246.3898 248.1203 0.2303 0.0018 1.1562 0.0010 6.5040 6.00E-04 

Weib 172.1352 176.1352 177.8656 0.0823 0.7625 0.0837 0.6725 0.4859 0.7606 

IChen 275.2038 279.2038 280.9342 0.3066 0.0000 1.8585 0.0000 9.8547 0.0000 

OChenW 389.6795 397.6795 401.1405 0.2228 0.0028 0.9500 0.0031 5.3362 0.0020 

ExpChen 171.1812 177.1812 179.7769 0.0814 0.7743 0.0698 0.7547 0.4306 0.8174 

EEIW 183.5118 191.5118 194.9728 0.1477 0.1121 0.3052 0.1305 1.5421 0.1668 

 

Table 8: Some model selection and goodness-of-fit statistics (dataset-II). 

Model -2logL AIC HQIC KS p(KS) CVM p(CVM) AD p(AD) 

OIChW 222.3036 230.3036 233.5475 0.0615 0.9690 0.0293 0.9792 0.1703 0.9965 

IWeib 251.6153 255.6153 257.2373 0.1664 0.0677 0.5250 0.0341 3.2210 0.0213 

Weib 224.9946 228.9946 230.6165 0.0957 0.6177 0.0842 0.6695 0.4779 0.7687 

IChen 252.0245 256.0245 257.6465 0.1680 0.0633 0.5349 0.0322 3.2758 0.0200 

OChenW 428.6546 436.6546 439.8985 0.2495 0.0010 0.9732 0.0027 5.3844 0.0019 

ExpChen 222.5402 228.5402 230.9732 0.0655 0.9477 0.0342 0.9616 0.1958 0.9915 

EEIW 223.0528 231.0528 234.2967 0.0628 0.9627 0.0386 0.9415 0.2235 0.9826 
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6. Conclusion 

We have created a new family of distributions called the odd inverse Chen-G family by utilizing the 

T-X approach. We also provide some key properties of this family of distributions. One member of 

this family, the OIChW distribution, has a reverse-J, increasing, or inverted bathtub shaped hazard 

function, which we obtained by using the Weibull distribution as the baseline distribution. We have 

examined some statistical characteristics of this distribution and estimated its associated parameters 

through the MLE method. We conducted a Monte Carlo simulation to evaluate the estimation 

procedure and found that the biases and MSEs decrease as the sample size increases, even for small 

samples. To apply the OIChW distribution, we used two real medical data sets and compared it with 

six other existing models using model selection criteria and goodness of fit test statistics. Our results 

showed that the OIChW distribution performs better than the other models, suggesting that it can be 

applied in various fields such as medical science, reliability engineering, and survival analysis. 

Furthermore, this family of distributions can be used to create new models in the future. 
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