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ABSTRACT 

The Google Machine Reassignment Problem (GMRP) presents a formidable challenge in 

combinatorial optimization, initially introduced by Google as part of the ROADEF/EURO 

2012 Challenge. This problem revolves around the optimal reallocation of a set of processes 

to a designated set of machines, adhering to specified soft and hard constraints. These 

constraints encompass considerations like load balancing, efficient resource utilization, and 

the minimization of communication overhead. This survey comprehensively examines the 

extensive literature dedicated to addressing the intricacies of the GMRP. It emphasizes the 

multitude of algorithms and techniques proposed to grapple with this intricate problem. The 

survey elucidated the problem's statement and its significance, particularly in contemporary 

computing landscapes marked by extensive data processing and the prevalence of cloud 

computing infrastructure. It navigates through the numerous challenges posed by the GMRP, 

highlighting the inherent complexity arising from the interplay of factors such as machine 

capacities, process dependencies, and communication constraints. The systematic 

categorization of diverse approaches is a key feature of the survey. It encompasses a spectrum 

of optimization techniques: mathematical methods, local search algorithms, population-based 

algorithms, hyperheuristics, and hybrid metaheuristics. The survey reveals that population-

based algorithms emerge as a more viable solution among the various approaches 

investigated. This conclusion is drawn based on the findings obtained by the authors while 

conducting the survey. 

1. Introduction 

In the realm of distributed computing, recent research endeavours have predominantly revolved 

around the concept of cloud computing. Cloud computing, a contemporary paradigm, has evolved 

from its predecessors, including grid computing and utility computing (Zhang and Geng, 2022). The 

term "cloud computing" alludes to an architectural framework for computing and data dissemination, 

leveraging a distributed network of remote servers (Praveen, Ghasempoor, Shahabi, and Izanloo, 

2023). Within this framework, a cloud system manifests as a parallel and distributed system 

composed of a cluster of Virtual Machines that dispense computational resources per service-level 

agreements (SLAs), orchestrated between service providers and clients (Liu, 2022). Cloud computing 

empowers users to access networked hardware, operating systems, and applications on demand, 

implying a wide spectrum of computing resources encompassing the networks, servers, and databases 

that can be efficiently provisioned to individuals and businesses at scale via internet-enabled cloud 
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platforms. This, in turn, facilitates cost reduction for businesses (Alduailij, Khan, Tahir, Sardaraz, 

Alduailij, and Malik, 2022). The cloud resource pool typically comprises numerous hosts, while 

virtual machines are employed to offer the mentioned resources and services. Cloud computing 

services are categorized into Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and 

Infrastructure-as-a-Service (IaaS). SaaS offers accessible software applications via the Internet, 

reducing local installations and maintenance; PaaS provides developers with frameworks for building 

applications; IaaS offers virtualized computing resources like virtual machines, storage, and 

networking, enabling flexible infrastructure management (Velliangiri, Karthikeyan, and Vinoth, 

2021).  Notably, the provisioning of services within the cloud platform entails dynamic adjustments to 

the available resources of all physical hosts (Balasubramaniam, Vijesh, Sivakumar, Prasanth, 

Satheesh, Kavitha, and Dhanaraj, 2023). This dynamism precludes a consistent assignment of 

processes to the host with the available resources. Consequently, task scheduling has emerged as a 

pivotal challenge in cloud computing, where tasks or processes are allocated to central data sources 

using scheduling algorithms. However, the diversity of scheduling objectives has prevented the 

emergence of a singular, definitive scheduling algorithm, leading to the construction of hybrid or 

amalgamated scheduling strategies. The complexity of a scheduling problem can span seconds, hours, 

or even years, contingent upon the approach employed, with algorithm efficiency being gauged by its 

runtime, which typically scales linearly with input complexity (Manikandan,  Gobalakrishnan, and 

Pradeep, 2022). In the context of computational complexity theory, complexity classes group 

problems with comparable difficulty under a specific context (Guo, 2021). 

The effective administration of vast infrastructure is a crucial aspect for cloud computing service 

providers such as Google and Amazon (Portal, 2012). The primary goal is to obtain and distribute 

resources to provide high-quality services to clients. Prioritizing optimal resource utilization is of 

utmost importance since any inefficiencies would require acquiring extra resources to compensate for 

the disadvantages of suboptimal utilization. Nevertheless, the concept of resource optimization goes 

beyond the mere maximization of computational capability and includes additional considerations 

such as system robustness. It is imperative to implement strategies aimed at minimizing the 

consequences of machine malfunctions, guaranteeing the system's operational effectiveness, even in 

the event of a total shutdown of the data centre. The increased stress experienced by the system 

increases the likelihood of malfunctions, which justifies the need for a purposeful effort to enhance 

the allocation of resources to ensure long-term reliability. 

In 2012, Google, a prominent cloud vendor, introduced the Google Machine Re-Assignment Problem 

(GMRP) as a combinatorial optimization challenge. The GMRP encapsulates key aspects of the 

aforementioned cloud computing issues. The challenge revolves around a group of machines with 

distinct available computational resources and pre-assigned processes delivering various services. The 

central objective entails allocating processes to machines to maximize machine utilization while 

safeguarding system reliability. Google introduced this formulation of GMRP at the ROADEF/EURO 

(French Operational Research and Decision Aid Society and the European Operational Research 

Society) Challenge in 2012 (Roadef/Euro Challenge, 2012). The challenge commenced on June 8th, 

2011, with a submission deadline of December 8th, 2011, for the qualification round. Of the 83 teams 

worldwide that registered and submitted their applications, only 30 teams met the criteria and 

progressed to the subsequent level. 

The main objective or contribution of this study is to provide a complete, if not exhaustive, summary 

of the algorithm variant applied by several authors for the Google Machine Re-Assignment Problem 

(GMRP) while providing a fundamental reference for academics who are interested in obtaining a 
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deeper understanding of the evolutionary path of Google Machine Re-Assignment Problem (GMRP). 

Furthermore, the report highlights prospective algorithms for further research within the framework of 

GMRP. 

The subsequent sections of this work are structured in the following fashion: Section II provides a 

comprehensive summary of the hosts of the GMRP competition, together with a detailed description 

of the data instances utilized. Section III of the document delineates the problem formulation for the 

GMRP and the constraints that govern the challenge. In Section IV, a thorough examination is 

performed to examine the suitability of various algorithms utilized by different researchers for the 

GMRP. Subsequently, Section V undertakes an analysis of the various methodologies employed in the 

study, leading to the subsequent formulation of the conclusion. 

2. ROADEF/EURO and GMRP Problem 

The ROADEF/EURO challenge is a collaborative competition jointly organized by the French 

Operational Research and Decision Aid Society and the European Operational Research Society. 

Established in 1999, the challenge focuses on enhancing industrial optimization problems (Afsar, 

Artigues, Bourreau, and Kedad-Sidhoum, 2016). In 2012, Google proposed a subject for the challenge 

involving the complex task of reallocating processes from one set of computers to another. The goal 

was to improve machine utilization, minimize relocation costs, and optimize the use of resources like 

CPU, RAM, and disk. These objectives had to be achieved while adhering to operational constraints. 

The problem consists of two distinct phases: 

i. Qualification phase: During this step, each algorithm was executed using instances of Set A. 

In this study, a total of 30 highest scores were chosen for each category. 

ii. In the last step, the execution of each algorithm was carried out using instances of enormous 

size; specifically groups B and X. The instances consisted of a range of 5,000 to 50,000 

processes and 100 to 5,000 machines. 

2.1 Data Instances Description   

The GMRP competition, conducted during the ROADEF 2011/2012 event, included 30 instances. 

Multiple participant groups used these instances to evaluate their methodologies. These instances are 

available on the challenge's official website and are divided into three groups (ROADEF/EURO 

Challenge, 2012). The sets comprise cases A, B, and X. The present analysis suggests using examples 

from sets A, B and X. 

i. Set A consists of problem instances that take into account a constraint of 1000 processes. 

ii. Set B consists of problem situations characterized by the presence of processes ranging from 

5000 to 50,000. 

iii. Set X: consists of problem instances with some processes between 5000 and 50,000. 

Table 1: Dataset A, B, and X characteristics. 

Instance  |r| |m| |s| |p| |l| |n| 

A 1-1 2 4 79 100 4 1 

A 1-2 4 100 980 1,000 4 2 

A 1-3 3 100 216 1,000 25 5 

A 1-4 3 50 142 1,000 50 50 
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A 1-5 4 12 981 1,000 4 4 

A 2-1 3 100 1,000 1,000 1 1 

A 2-2 12 100 170 1,000 25 5 

A 2-3 12 100 129 1,000 25 5 

A 2-4 12 50 180 1,000 25 5 

A 2-5 12 50 153 1,000 25 5 

B1 12 100 2,512 5,000 10 5 

B2 12 100 2,462 5,000 10 5 

B3 6 100 15,025 20,000 10 5 

B4 6 500 1,732 20,000 50 5 

B5 6 100 35,082 40,000 10 5 

B6 6 200 14,680 40,000 50 5 

B7 6 4,000 15,050 40,000 50 5 

B8 3 100 45,030 50,000 10 5 

B9 3 1,000 4,609 50,000 100 5 

B10 3 5,000 4,896 50,000 100 5 

X1 12 100 2,529 5,000 10 5 

X2 12 100 2,484 5,000 10 5 

X3 6 100 14,928 20,000 10 5 

X4 6 500 1,190 20,000 50 5 

X5 6 100 34,872 40,000 10 5 

X6 6 200 14,504 40,000 50 5 

X7 6 4,000 15,273 40,000 50 5 

X8 3 100 44,950 50,000 10 5 

X9 3 1,000 4,871 50,000 100 5 

X10 3 5,000 4,615 50,000 100 5 

Table 1 shows the key attributes of datasets A, B, and X. The GMRP Problem considers: 

i. Processes |p|, which identifies processes needing reassignment based on resource 

requirements. 

ii. Services |s| represents refined process dependency relationships, forming problem constraints. 

iii. Machines |m|, encompassing reassignable processes' supporting machines, each with specific 

resource capacities. 

iv. Location |l|, defining disjoint machine sets; it specifies minimum locations (Spreadmin) for 

each service's process reassignment. 
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v. Neighbourhood |n| involves machines with reliable service relationships and assigns processes 

to machines within the same neighbourhood. All neighbourhoods are distinct sets. 

vi. Resource |r|: define the set of demandable resources  

3. Problem Formulation 

3.1 Problem Notation 

The notation used in the GMRP problem is summarized as  

i.    set of machines. 

ii.    set of processes. 

iii.    set of resources. 

iv.    balance of triples. 

v.       machine process   is assigned to. 

vi.        initial machine process   is assigned to. 

vii.         the capacity of resource     for machine     and         

viii.          the safety capacity of a resource     on a machine    . 

ix.         the requirement of resource     for process    . 

x.         the usage   for a machine   for a resource    

3.2 Decision Variable for GMRP 

Let   be the set of machines, and   the set of processes. A solution is an assignment of each process 

    to one and only one machine     with the assignment mapped as       . where the 

initial assignment of process    is denoted as      . For instance, if           and  
            , then          ,         ,          means processes    and       run on 

machine    and process     runs on machine     The problem's goal is to minimize costs linked to 

reassignment, considering two types of constraints: hard and soft. Hard constraints must never be 

broken; a viable solution respects these, allocating all processes to machines. The problem has 

stringent limits, and while violating soft constraints is acceptable, their satisfaction is valuable. 

Achieving optimal satisfaction for soft constraints improves solution quality. Thus, the problem aims 

to minimize soft constraint violations while meeting all hard constraints. 

3.3 Hard Constraints  

Capacity constraint: refers to the limitation on the total amount of resources that an instance process 

can demand. It is essential to ensure that the sum of the demandable resources does not exceed the 

capacity of the machine resources. Assume R to be the set of resources that is common to all the 

machines,        the capacity of resource     for machine     and        the requirement of 

resource     for process    . Thus, for a given assignment M, the usage U of a machine m for a 

resource r can be defined as: 

                   (1) 

where         

Conflict constraints: states that processes belonging to the same service must not be assigned to the 

same machine. This constraint ensures the system's resilience in the face of potential machine failures. 
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Thus, processes are normally partitioned into services. Suppose S represents the set of services. A 

service      is a set of processes that must run on distinct machines (note, all services are disjoint). 

Thus, this constraint is defined by equation 3.4: 

                                          (2) 

                                      

                                      

Spread constraints: state that processes of the same service must be distributed to machines in 

certain dispersed locations. Suppose L represents the set of locations, and a location     is a set of 

machines. For each     , let                 be the minimum number of distinct locations 

where at least one process of service s should run. Thus, this constraint is defined by equation 3.5: 

                                                 (3) 

Dependency constraints: state that if two services are interdependent, the collection of machines is 

divided into neighbourhoods so that the dependent process is assigned to a machine close to the 

independent process, and vice versa. Suppose N represents the set of neighbourhoods, where a 

neighbourhood      is a set of machines. Assume service   depends on service   , then each 

process of    should run in the neighbourhood    of a    process: 

                                                 (4) 

                                      

Transient usage constraints: Assuming a process is migrated from one computer to another, 

transient usage necessitates the need for a sufficient amount of capacity on both machines (the ability 

to retain resources during the migration of processes), raising the issue of transient consumption 

limits. Essentially, when transferring a process p from a machine    to machine   , certain resources 

are duplicated in consumption. One such example is the utilization of disc space, where during the 

copying process from the machine    to   , disc space becomes unavailable on the machine   . It is 

imperative that machine    possesses sufficient disc space to accommodate the copy operation. Let 

      denote the subset of resources that necessitate transient utilization, meaning they require 

capacity on both the initial assignment      )and the current assignment     . Hence, a transient 

usage can be mathematically expressed as: 

                                               (5) 

3.4 Soft Constraints  

Since the problem aims to optimize the utilization of some set of machines. Hence, to achieve this, a 

total objective cost is proposed by combining a load cost, a balance cost, and several move costs. Let  

        be the safety capacity of a resource     on a machine    . 

Cost 1 (Load): corresponds to the used resource capacity above the safety capacity. It is a metric that 

quantifies the safety capacity of a resource on a machine. Thus, the load cost is defined per resource 

and is mathematically represented as: 

                                         (6) 

Assume B to be some set of triples defined     . 

Cost 2 (Balance): refers to the equilibrium between resource availability. For a given triple  
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                                                    (7) 

                          

Suppose        is the cost associated with relocating process   from its initial machine      . 

Cost 3 (Process Move) 

                                       (8) 

Cost 4 (Service Move) 

                                            (9) 

Suppose                            is the cost associated with relocating a process p from the 

machine         to machine              

Cost 5 (Machine move) 

                                    (10) 

Hence, the total objective cost  

          
                                                                           
                                                                            

                                       (11) 

4. Methodology Approaches for GMRP 

This section provides an overview of the current advancements in algorithms utilized for solving the 

GMRP. The categorization of existing algorithms was undertaken based on one or more of the 

following approaches: 

i. Mathematical Optimization algorithms. Mathematical techniques, such as Integer 

Programming and Constraint Programming, operate on the assumption that both the objective 

function and the constraints exhibit linearity (Tan, Goh, Kendall, and Sabar, 2021). 

Additionally, these algorithms impose restrictions on one or more of the problem variables, 

requiring them to take on integer values. 

ii. Meta-heuristic algorithms are computational techniques that are designed to solve complex 

optimization problems. These algorithms are inspired by natural phenomena or human 

behavior and aim to find near-optimal solutions Meta-heuristic algorithms are extensively 

applicable problem-solving techniques that are specifically devised to identify a satisfactory 

solution within a computationally feasible timeframe (Sharma and Tripathi, 2022). Examples 

of the meta-heuristic algorithms are 

a. Multi-Point Solution-Based Method: The Multi-Point Solution-Based Method also 

known as population-based algorithms involves maintaining and manipulating a set of 

candidate solutions, where each answer represents a point in the search space of the 

problem. 

b. Single solution-based Method: involves the maintenance of a solitary candidate 

solution, with the utilization of a moving operator to explore the vicinity around the 

existing solution. 

iii. Hyper-heuristic approaches: refer to a class of problem-solving methodologies that aim to 

automate the process of selecting or generating heuristics for solving complex problems 

(Bozorgi, Yazdani, Golsorkhtabaramiri, and Adabi, 2023). Essentially, the hyper-heuristic 
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techniques employ a collection of heuristics and a selection mechanism to automate the 

process of determining which heuristics should be utilized. 

iv. Hybrid approaches. hybrid methodologies integrate the advantageous aspects of multiple 

meta-heuristic algorithms within a cohesive framework. 

Figure 1 shows the paradigms of the methodological approaches applied by distinct authors for the 

GMRP problem. 

 

Figure 1: GMRP Methods Paradigm. 

4.1 Mathematical Approaches 

By iteratively switching processes, Chiraphadhanakul and Figueroa (Team J21) were able to optimize 

costs and workload distribution across machines using a decomposition strategy (Afsar et al., 2016). 

To identify lower prices, they begin by solving a linear relaxation of the original, unconstrained 

problem. They use these lower costs to calculate estimated costs for assigning processes to individual 

machines. Tierney, Delgado, Pacino, and Malitsky (Team J5) proposed an enhanced parallel method 

that combines a mixed integer model with a destruction/reconstruction approach. This technique 

involves an exhaustive neighbourhood search where the existing solution undergoes iterations of 

relaxed randomly selected variables. The local search uses Mixed Integer Programming (MIP) to 

optimize these relaxed variables, and the process continues until a predefined termination condition is 

met. 

Brandt, Speck, and Völker (2016) as team J25 introduced a Constraint-Based Large Neighborhood 

Search (CBLNS) approach for the GMRP. This method employs a Large Neighborhood Search (LNS) 

iteratively, optimizing subsets of processes through Constraint Programming using depth-first search. 

Strategies include random and process neighbourhood reassignment, targeting underutilized 

machines, and undo-move reversals. The approach's competitiveness was assessed against top 

solutions in the ROADEF/EURO competition, demonstrating comparable performance for cases in 

sets A, B, and X. Hence in seven out of ten instances in the X dataset, the difference from the BKS is 
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less than 1.6%. However, in certain cases such as X3 and X5, their values deviate significantly from 

the well-recognized optimal answer of 1883.36 and 324.66%  respectively. 

Mehdi et al. (2015) team 38 proposed an optimization-based heuristic approach to address the GMRP 

problem. They decomposed it into smaller instances, which were solved via mixed integer 

programming. Four improvement procedures were introduced: inter-neighbourhood procedure, 

reassigning processes from different neighbourhood-loaded machines; intra-neighbourhood 

procedure, reassigning from closely located neighbourhood-loaded machines; single process transfer 

across machines; and intra-service procedure, reassigning processes covered by a service in the 

current solution using linear assignment. These methods aimed to enhance solutions and address the 

GMRP challenge. 

Mrad, Gharbi, and Haouari (2016) as team 25 introduced OBH-S27, an optimization-based heuristic 

technique. This approach addresses load imbalance issues in specific devices through division into 

smaller problems, solved iteratively with a Mixed Integer Programming solver. A sub-machine 

generates sub-problems, considering devices with varying load factors. Four assignment augmentation 

methods were employed: Inter-neighborhood, Intra-neighborhood, Swap, and Intra-service 

procedures. C-PLEX 12.4 software was used for solving. Incorporating relaxation of the target 

function focused on the load cost component. Experimental trials on sets A, B, and X showed OBH-

S27 effectively optimized solutions in set A. Hence, for the author's study, the maximum difference 

detected between the Best-Known Solution (BKS) and the solutions derived from seven instances of 

the X dataset is determined to be below 3.06%. 

Team S11, consisting of Clautiaux, Liefooghe, Legillon, and Talbi in 2012, proposed a two-phase 

approach for workload optimization. The first phase employs an iterated local search algorithm, 

followed by a heuristic strategy that redistributes overload costs among computers. They use an 

integer programming solver to improve the existing solution locally. 

Jaskwosi, Szubert, and Gawron (2015), as team J12 introduced a hybrid algorithm named HC-

LNSHC, merging the Hill Climbing (HC) and Large Neighborhood Search (LNS) techniques. 

Comprising First Improvement Hill Climbing (FI-HC) and LNS with Mixed Integer Programming, 

their method aimed to optimize process allocation in instances of the GMRP. FI-HC enhanced 

solutions via a Shift operator, reallocating processes before local optima, prioritizing cost reduction. 

Integrated Tabu List considered machines for improved solutions, while LNS generated sub-problems 

focusing on subsets of machines. Results indicated FI-HC's effectiveness with larger instances and 

emphasized simultaneous process reassignment's importance. Notably, HC-LNSHC was ranked third 

most effective in addressing the problem, successfully converging to a single optimal solution in X 

instances. 

Teypaz (Team S14) proposed the integration of a precise algorithm and a metaheuristic approach for 

the 2012 GRMP problem. The applied algorithm is a Tabu search method with two phases, utilizing 

matching moves. The well-known Edmonds' bloom shrinking method was used to solve a maximum 

weight matching problem and assess solution effectiveness. The Tabu search involves process 

reassignment and swapping, using the LEMON library to find a single Best-Known Solution (BKS) 

within dataset X.  

Pécot (Team S34) proposes an additional tabu search algorithm featuring two distinct 

neighbourhoods, namely insert and switch. Instead of utilizing entire neighbourhoods, only randomly 

selected subsets are employed. The aforementioned straightforward approach demonstrates high 

efficacy by successfully identifying two BKS within the X instances and three BKS within the B 

instances (Portal, Ritt, Borba, and Buriol, 2016). 

Table 1 presents the strengths and weaknesses of the mathematical approach utilized by several 

authors for the GMRP algorithm. 
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Table 1: Mathematical approach strengths and weakness. 

Authors Strength Weakness 

Chiraphadhanakul and Figueroa 

(Team J21) 

The decomposition strategy 

optimizes costs and workload 

distribution iteratively. 

The reliance on a linear 

relaxation technique may lead to 

suboptimal solutions. 

Tierney et al., (Team J5) The enhanced parallel method 

combines a mixed-integer model 

with a destruction/reconstruction 

approach for improved 

optimization. 

The exhaustive neighbourhood 

search may be computationally 

expensive. 

Brandt et al., (Team J25) The Constraint-Based Large 

Neighborhood Search (CBLNS) 

approach employs a depth-first 

search for optimization. 

Deviations in performance, 

especially in cases like X3 and 

X5, indicate variability in 

solution quality. 

Mehdi et al., (Team 38) Optimization-based heuristic 

approach with decomposition into 

smaller instances. 

The effectiveness of 

improvement procedures may 

vary across different problem 

instance. 

Mrad et al., (Team 25) OBH-S27 addresses load 

imbalance through iterative 

division and Mixed Integer 

Programming. 

The effectiveness is case-

dependent, with differences in 

solutions for various datasets. 

 Clautiaux et al., (Team S11) Two-phase approach with an 

iterated local search and heuristic 

strategy 

The reliance on an integer 

programming solver may limit 

scalability. 

Jaskwosi et al., (Team J12) HC-LNSHC combines Hill 

Climbing and Large 

Neighborhood Search Techniques 

The chosen parameters influence 

the effectiveness, and it may not 

guarantee a global optimal 

solution 

Teypaz (Team S14) The combination of enhanced 

Tabu search and Edmonds' bloom 

shrinking method may lead to 

faster convergence to optimal or 

near-optimal solutions. This is 

especially beneficial in scenarios 

where computational resources 

are limited and quick decision-

making is required. 

The effectiveness depends on the 

quality of the chosen matching 

moves. 

Pécot (Team S34) Additional Tabu search algorithm 

with distinct insert and switch 

neighbourhoods 

The effectiveness of Tabu Search 

is highly dependent on properly 

tuning its parameters, such as the 

tabu list size, aspiration criteria, 

and neighbourhood structures. 

Selecting inappropriate parameter 

values can lead to suboptimal or 

inefficient search processes. 
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4.2 Single-Point Solution-Based Approaches  

Gabriel, Marcus, Luciana, Leonardo, and Alexandre (2012) proposed a Simulated Annealing 

approach to tackle the GMRP Problem. Their method incorporates two neighbourhoods, each utilizing 

efficient data structures to expedite core operations. The first neighbourhood relocates tasks between 

machines, while the second swaps tasks on different machines. To generate viable solutions, the 

authors introduced a probability function with   and     probabilities (with p set at 0.7) to choose 

between neighbourhoods. Their strategy freezes the solution when no improvement occurs for 20 

iterations and accepted moves are below 0.1%. In such cases, the temperature is increased by dividing 

the initial temperature by 100, aiming to escape local minima by perturbing the current solution. 

The Simulated Annealing (SA) approach was also adapted by Ritt, Buriol, Borba, Portal, and 

Benavides (Team S23) in 2012 and was enhanced to integrate two stochastic neighbourhoods (random 

process reassignment and swap). The authors proposed a particular data format that facilitates the 

assessment of moves and implementation of updates in constant time. In six occurrences within the X 

dataset, the disparity from the BKS (benchmark standard) is seen to be below 0.2%. Additionally, it is 

important to highlight that the maximum deviation from the Best-Known Solution (BKS) is less than 

50%, with a particular case (X_5) demonstrating a deviation of 48.7%. 

Larose and Posta (Team J10) developed a parallelized iteration of the LS algorithm, running 

simultaneously on two threads of the test machine. This method involves generating feasible solutions 

and refining them via path-relinking, which includes selecting initial and guided solutions from a 

pool. The algorithm generates a neighbourhood by transferring processes between machines (Afsar  

et al., 2016).  

Gabay and Zaourar (2016) as team J19 introduced an innovative approach involving vector bin 

packing (VBP) with heterogeneous bins to address the GMRP challenge. They extended the VBP 

problem to accommodate bins of varying sizes, a framework suitable for addressing virtual machine 

placement issues that extend beyond GMRP. The researchers proposed diverse families of effective 

greedy heuristics, demonstrating their feasibility and adaptability to varying constraints. By analyzing 

the structural facets of GMRP, they partitioned the problem into subproblems and customized their 

algorithms accordingly. The evaluation involved academic benchmarks, including the GMRP problem 

and a heterogeneous bin variant of a randomly generated VBP problem. 

Gavranovic and Buljubasic (2016) team S41, introduced the Noisy Local Search (NLS) algorithm, 

employing a multi-start local search strategy with Swap, Shift, and BPR operators. Processes were 

arranged by resource requirements before applying NLS, prioritizing larger ones and adaptively 

resizing a subset. The BPR operator enhanced solution quality in specific cases but increased 

execution time (3-7 times). It satisfied constraints except for capacity limits, triggering perturbations 

for improved solutions. A noise method and adjusted objective functions countered local optima. NLS 

addressed random seed concerns by reallocating procedures based on various seeds, yielding notable 

results across instance sets A and X, albeit with no solutions for set B. Gavranovic and Buljubasic's 

(2016) numerical findings surpassed others, prevailing as the superior outcome. 

Portal et al. (2016) addressed the GMRP problem by presenting a heuristic algorithm based on 

simulated annealing. Their approach employs two neighbourhoods: one for relocating a process 

between machines and another for swapping processes between machines. They utilize an objective 

function, with a complexity of        where    represents the resources and d indicates the 

dependencies of the service a process belongs to. The algorithm operates concurrently with two 

distinct parameter sets until a convergence criterion is met. 

Team J6, comprising Dudebout, Masson, Michallet, Petrucci, Subramanian, and Vidal in 2012, 

presented an innovative strategy blending wide neighbourhood and local search techniques (Afsar  

et al., 2016). The local search involves two key operations, relocating and swapping processes on 
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computers. The broader neighbourhood search entails iteratively dismantling and reconstructing 

substantial solution segments, which is achieved by executing a mixed integer program. 

Vancroonenburg and Wauters (Team J17) proposed a metaheuristic approach using the late 

acceptance hill-climbing algorithm with two efficient neighbourhood functions (Afsar et al., 2016). 

The approach evaluates new solutions based on their quality relative to the current solution within the 

last L iterations. Strategies used by other teams included process reassignment and switch machine 

neighbourhood. Higher L values result in slower convergence but better final solutions. Maximum 

deviation from the benchmark solution (BKS) was about 1.5% in six instances during the analysis of 

set X, noting that some instances, like X5, exhibit larger variations. 

Multi-Start Iterated Local Search (MS-ILS), introduced by Masson et al. (2013), is a local search-

based approach addressing Multi-Capacity Bin Packing (MCBPP) and GMRP. It utilizes Iterated 

Local Search (ILS) incorporating Swap and Shift operators. The method begins by optimizing Load 

and Balance costs in a machine subset   ; then, individual operators are applied to the chosen 

machine   , accepting the one improving solution quality. The local search was applied to either the 

best-found solution or the current one iteratively to balance exploitation and exploration. MS-ILS 

combats local optima using a multi-start component. The study employs shaking motions, home 

relocation, and K-swap operators. Home relocation restores k processes to their initial machine, while 

K-swap swaps groups of 3, 4, or 5 processes between k pairs of machines. MS-ILS achieved one of 

the best-known solutions for set A.  

Team S5 (Gogos, Valouxis, Alefragis, and Housos) introduces an innovative approach integrating 

integer programming with a late acceptance metaheuristic, utilizing a large variable neighbourhood 

search. The cooperative process continues until the set time limit is reached, achieving a maximum 

separation of less than 234.94% from the BKS even if no BKS is found. Team S27 (De Oliveira, 

Lopes, de Noronha, de Morais, and de Souza) integrates integer programming and a metaheuristic 

iterated local search with a perturbation technique. Their approach yields an average improvement of 

63.97% from the initial solution. Team S37 (Lu and Whang) refines the iterated local search 

algorithm by exploring three neighbourhoods: process reassignment, 1-1 process swap, and 1-2 

process swap. The stochastic process introduces perturbations when no solution change occurs. They 

achieve differences from the benchmark (BKS) of less than 4.83% for seven instances of set X. Team 

J38 (Catusse) presents a hill climbing heuristic employing "Move," "Swap," and "2-1 Swap" 

operations across distinct neighbourhoods. Novel solutions are accepted for improvement over the 

current solution, sometimes favouring suboptimal solutions for faster convergence. Team S6, 

consisting of Benoist, Gardi, Estellon, Darlay, Megel, and Nouioua, tackled the GMRP by 

transforming it into a binary model. They employ a local solver utilizing adaptive simulated 

annealing, for default search. This involves adjusting specific binary variables to enhance the 

objective function while adhering to constraints. Changes that breach constraints are rejected and 

alternative actions are assessed based on their impact on the objective function. In their study, Jarbou 

and Mladenovic (Team S40) proposed a Variable Neighborhood Search (VNS) algorithm that 

operates at three levels. This algorithm effectively decomposes the problem into smaller subproblems. 

The primary framework, known as skewed variable neighbourhood search, can incorporate marginally 

inferior alternatives, provided that they exhibit sufficient dissimilarity from the current solution. This 

approach identifies two best-known solutions (BKS) on the B instances. 

Wang, Lü, and Ye (2016) proposed a Multi-neighborhood Local Search (MNLS) approach for the 

GMRP. Their algorithm incorporates three primary neighbourhood structures, an auxiliary 

neighbourhood, a partition mechanism for neighbourhoods, and a dynamic perturbation operator. This 

approach enables exploration beyond feasibility, accelerates search through partitioning, and avoids 

local optima. The algorithm's holistic strategy aims to enhance solution quality by diversifying search 

and escaping local optima. 
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Table 2 presents the strengths and weaknesses of the single-point methods applied by distinct authors 

for the GMRP algorithm. 

 

Table 2: Single-point solution-based approaches strengths and weakness. 

Author Strength Weakness 

Gabriel et al., Utilizes Simulated Annealing 

with two efficient 

neighborhoods, to enhance 

solution exploration. Also 

incorporates a probability 

function for selecting 

neighbourhoods, adding 

adaptability. 

Freezes the solution to escape 

local minima, contributing to 

convergence. 

Relies on a fixed probability 

value, limiting adaptability. 

Temperature adjustment 

strategy might impact 

convergence speed. 

Ritt et al., (Team S23) Integrates two stochastic 

neighbourhoods, improving 

solution diversity. Proposes a 

data format facilitating efficient 

assessment and updates. 

Achieves low disparity from the 

benchmark standard in six 

instances. 

Reports a deviation of 48.7% in 

one case, indicating variability. 

Specifics on the stochastic 

nature of neighbourhoods are 

not detailed. 

Larose and Posta (Team J10) Implements a parallelized 

version of the LS algorithm for 

efficiency. Involves path-

relinking to refine solutions, 

enhancing optimization. 

Utilizes a pool for selecting 

initial and guided solutions, 

promoting diversity. 

Limited details on the specifics 

of path-relinking. 

Efficiency gains from 

parallelization are not 

quantified. 

Gabay and Zaourar (Team J19) Introduces vector bin packing 

with heterogeneous bins, 

expanding applicability.  

Proposes diverse greedy 

heuristics tailored to varying 

constraints. 

Customizes algorithms based on 

the structural facets of GMRP, 

enhancing effectiveness. 

The variability applied can 

result in not being near-optimal.  

 

Gavranovic and Buljubasic 

(Team S41) 

Introduces Noisy Local Search 

with diverse operators, 

enhancing solution quality. 

Addresses random seed 

concerns, contributing to result 

stability. Numerical findings 

surpass other algorithms, 

establishing superiority. 

Increased execution time with 

the Big Process Re-assignment 

operator may impact efficiency. 

Portal et al. (2016) Utilizes simulated annealing 

with two effective 

The effectiveness of Search is 

highly dependent on the proper 
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neighbourhoods. Incorporates 

an objective function with 

manageable complexity. 

Operates with two parameter 

sets concurrently, enhancing 

flexibility. 

tuning of its heating parameters. 

 Dudebout et al. (Team J6) Integrates wide neighbourhood 

and local search techniques for 

comprehensive exploration. 

Applies mixed integer 

programming in local search, 

improving solution accuracy. 

Involves dismantling and 

reconstructing solution 

segments, promoting diversity. 

The cost of applying mixed 

integer programming in local 

search can increase the 

computational overhead. 

Vancroonenburg and Wauters 

(Team J17) 

Utilizes late acceptance hill-

climbing with efficient 

neighbourhood functions. 

Adapts to solution quality 

within the last L iterations, 

enhancing convergence. 

Achieves a maximum deviation 

of about 1.5% from the 

benchmark solution in some 

instances. 

Higher L values might result in 

slower convergence, impacting 

efficiency. 

Gogos et al., (Team S5) Integrates integer programming 

with late acceptance meta-

heuristic, combining precision 

and flexibility. Achieves 

notable results even without 

finding the best-known solution. 

Utilizes large variable 

neighbourhood search for 

comprehensive exploration. 

- 

De Oliveira et al., (Team S27) Integrates integer programming 

and iterated local search with a 

perturbation technique. Yields 

an average improvement of 

63.97% from the initial 

solution, indicating 

effectiveness. Combines 

precision from integer 

programming with adaptability 

from iterated local search. 

If not carefully implemented, 

the perturbation technique can 

lead to increased execution 

time. 
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Lu and Whang (Team S37) Achieves differences from the 

benchmark (BKS) of less than 

4.83% for seven instances in set 

X. 

 

Jarbou and Mladenovic  

(Team S40) 

Proposes a Variable 

Neighborhood Search (VNS) 

algorithm operating at three 

levels. Decomposes the problem 

into smaller subproblems, 

promoting efficiency. Identifies 

two best-known solutions 

(BKS) on the B instances, 

demonstrating effectiveness. 

Variability can result in 

increased computational 

overhead. 

Wang et al. (2016) Introduces a Multi-

neighborhood Local Search 

(MNLS) approach for GMRP. 

Implements a dynamic 

perturbation operator to counter 

local optima. 

The dynamic perturbation 

operators might also result in 

increased computational cost. 

 

4.3 Multi-Point Solution Based Method 

Sansoterra, Ferruci, Calcaveccia, and Sironi (Team J33) proposed an approach that integrates parallel 

simulated annealing with variable neighbourhood search methods for the GMRP intending to exploit 

the computing capabilities of several CPU cores (Afsar et al., 2016). Information is transmitted across 

heuristics through a shared repository of possible solutions. The solution repository provides a secure 

method for accessing two separate collections of solutions, each distinguished by either high quality 

or great diversity. The path relinking technique probabilistically selects one solution from each set 

with a 50% chance and examines the intermediate solutions. One solution that is widely recognized as 

the best-known solution (BKS) is identified from dataset X, whereas another BKS is identified from 

dataset B. 

To solve the GMRP, (Turky, Sabar, Sattar, and Song, 2016) developed a parallel late acceptance hill-

climbing algorithm (P-LAHC) based on evolutionary principles. Their research was driven by a desire 

to improve efficiency by breaking free of local optima. Instead of relying on a single solution, P-

LAHC uses a set of possible solutions. Each possible answer represents one LAHC solution. The 

LAHC processes all run simultaneously to boost the quality of the search results. The LAHC models 

avoid becoming trapped at local optimums by starting with different beginning individuals (as the 

LAHC process) and taking alternative search pathways. Ayad et al. (2016) also incorporate mutation 

operators to eliminate search stagnation. This technique has considerably mitigated the likelihood of 

the search being stuck at a local optimum. 

Turky, Sabar, Sattar, and Song (2017) introduced an Evolutionary Simulated Annealing (ESA) 

algorithm. ESA employs a population of potential solutions, each equipped with its own Simulated 

Annealing (SA) algorithm instance. These SA procedures run concurrently, starting from unique 

initial solutions generated by modifying   . The objective was to generate distinct solutions with 

various local optima levels systematically. The authors used mutation operators (Swap, Double Swap, 

Shift, and Double Shift) to overcome local optima. The study found that ESA's effectiveness was 

comparable to that of advanced algorithms, particularly noting its highest achievement of knowledge 

in set A. In 2017, Turky et al. (2017) introduced a multi-neighborhood great divide (MNGD). The 

Great Deluge algorithm is a singular-point method that incorporates acceptance criteria for both 

enhanced and non-enhanced solutions, considering a predetermined threshold (referred to as the 
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quality of s0) and a minor decrement ( ) applied during each iteration. Four operators are employed to 

introduce disturbances to solutions: single swap, double swap, single shift, and double shift operators. 

The results obtained from the three benchmark instances indicate that MNGD achieved the best-

known solution in sets A and B, with one solution discovered in each set. 

Turky, Sabar, Sattar, and Song (2018) introduced the Cooperative Hybrid Memetic Algorithm 

(CHSA), an advanced version of the parallel late acceptance hill-climbing algorithm (P-LAHC), 

integrated with SA. The algorithm concurrently executes numerous SA algorithms with different 

configurations involving perturbation operators, beginning temperature, and cooling coefficient. Each 

iteration's best solution from each SA algorithm is preserved after being evaluated using operators like 

single swap, double swap, single shift, and double shift. The CHSA algorithm outperforms competing 

approaches in sets A and B, using a novel mutation operator to improve the optimal solution obtained 

from all SA approaches. This execution was parallelized using four threads. 

Saber, Gandibleux, Neil, Murphy, and Ventresque, (2019) devised GeNePi, a hybrid optimization 

model, integrating GRASP, Non-dominated Sorting Genetic Algorithm, and Pareto Local Search 

Algorithm to address the Google Machine Reassignment Problem (GMRP). They applied this model 

to 14 dataset instances from categories A and B. In the initial phase, they employed a Greedy 

Randomized Adaptive Search Procedure to reassign processes with relaxed randomization, based on 

dependencies sequentially. The non-dominated sorting genetic algorithm used crossover and mutation 

techniques to refine individual assignments and mix their features. Lastly, the Pareto Local Search 

applied local search operators like process swaps, 1-exchange, and shifts for improved solutions. The 

study primarily analyzed the time GeNePi required to attain feasible solutions across instances. 

Table 3 presents the strengths and weaknesses of the multi-point solution-based method utilized by 

several authors for the GMRP algorithm. 

Table 3: Multi-point solution-based method strengths and weaknesses. 

Authors Strength  Weakness 

Sansoterra et al., (Team J33) Integration of parallel simulated 

annealing with variable 

neighbourhood search for 

GMRP. 

Exploitation of multi-core CPU 

capabilities for enhanced 

computing efficiency. 

Utilization of a shared 

repository for information 

exchange among heuristics. 

Management of two collections 

of solutions based on high 

quality and diversity. 

Implementation of path 

relinking technique for solution 

selection and refinement. 

Reliance on probabilistic 

selection for path relinking may 

introduce variability. 

Turky et al., (2016 - P-LAHC) Introduction of parallel late 

acceptance hill-climbing 

algorithm (P-LAHC). 

Utilization of evolutionary 

principles to escape local 

optima. 

Simultaneous execution of 

Inappropriate tuning or 

selection of mutation operators 

could potentially hinder 

convergence or compromise the 

quality of solutions. 
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multiple LAHC processes to 

enhance search quality. 

Mitigation of local optima by 

starting with different initial 

individuals. Incorporation of 

mutation operators to prevent 

search stagnation. 

Turky et al. (2017) Introduction of Evolutionary 

Simulated Annealing (ESA) 

algorithm. Utilization of a 

population of potential solutions 

with concurrent SA instances. 

Use of mutation operators to 

overcome local optima in ESA. 

Introduction of Multi-

neighborhood Great Deluge 

(MNGD) algorithm. 

Achievement of best-known 

solutions in sets A and B with 

MNGD. 

By introducing a population of 

potential solutions with 

concurrent Simulated Annealing 

(SA) instances, the ESA 

algorithm may lead to increased 

algorithmic complexity. 

Managing and coordinating 

multiple instances 

simultaneously can demand 

substantial computational 

resources. 

Turky et al. (2018) Introduction of Cooperative 

Hybrid Memetic Algorithm 

(CHSA). Integration of SA with 

multiple configurations in a 

parallel execution. Use of 

perturbation operators and 

cooling coefficients for SA 

algorithms. Preservation of the 

best solution from each SA 

algorithm in each iteration. 

Outperformance of competing 

approaches in sets A and B. 

Managing diverse perturbation 

operators and cooling 

coefficients may result in 

additional computational 

overhead. 

Saber et al., (2019) Development of a hybrid 

optimization model (GeNePi) 

using GRASP, NSGA, and 

Pareto Local Search. 

Application to 14 dataset 

instances from categories A and 

B. 

Sequential reassignment of 

processes using Greedy 

Randomized Adaptive Search 

Procedure. 

Utilization of crossover and 

mutation techniques in the Non-

dominated Sorting Genetic 

Algorithm. 

Application of local search 

operators in Pareto Local 

Search for improved solutions. 

The model's success relies on 

appropriately tuning parameters 

for each integrated algorithm. 

Sensitivity to parameter changes 

may pose challenges in 

achieving optimal performance 

across different problem 

instances. 
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4.4 Hyper-Heuristic Approaches 
Turky (2019) proposed an enhanced version of the bi-level hyperheuristic approach that was 

developed using Ant Colony Optimization (Ant-HH). This approach refines the concept of HH by 

incorporating various enhancements. Ant-HH has two levels: the first is dedicated to local search 

strategies, and the second is to operators. Using the Ant-HH strategy, an Ant Colony Optimization 

algorithm controls both by utilizing a combination of appropriate local search algorithms and 

sequences of operators. When searching for a solution, ants use a two-tiered, weighted graph where 

nodes reflect local search techniques and operators. Connectivity between nodes is valued as shown 

by these weights. Considering quality and diversity as goals, pheromones are deposited along edges, 

leading to non-dominated solutions. When it comes to improving algorithm convergence, heuristic 

knowledge places a premium on sets of two related local search methods or operators. The author's 

algorithm uses a pool of varied, high-quality answers. Each ant chooses a solution from the pool of 

possibilities as the process repeats. The final result uses Pheromone and heuristic knowledge to fine-

tune local search methods and operator sets. It uses the same distance-based method as HH to update 

its population. Ant-HH stands out as one of the top algorithms in testing sets A, B, and X.  Nine of the 

most popular solutions in Set A, six in Set B, and eight in Set X were found. 

Turky, Sabar, Dunstall, and Song (2020) proposed the utilization of a hyper-heuristic (HH) technique 

to tackle combinatorial optimization challenges, explicitly emphasizing the GMRP. They used a two-

stage hyper-heuristic framework in their research, which required the customization of local search 

algorithms and internal operators. Choosing a local search strategy like SA, ILS, LAHC, Great 

Deluge, or Steepest Descent is the first step in the process (referred to as HH-LS). Several local 

operators, such as the single Swap, double Swap, single Shift, double Shift, Swap-Shift, Shift-Swap, 

BPR, and Swap-BPR, are used in the subsequent phase. As a result, the innovative adaptive ranking 

system uses entropy to select suitable neighbourhood structures, thereby continuously updating the 

pool of available structures. The study includes a statistically sizable subset of the population, which 

improves the reliability of the results and allows researchers to more accurately gauge the problem's 

size and the solutions' scope. Updating the population of solutions with a distance-based method 

ensures differential representation across different regions of the search space, which improves 

allocation diversification.  

Table 4 depicts the strengths and weaknesses of the hyper-heuristic approaches utilized by several 

authors for the GMRP algorithm. 

 

Table 4: Hyper-heuristic approaches strengths and weakness. 

Authors Strength  Weakness 

Turky (2019) The approach utilizes Ant 

Colony Optimization, a 

metaheuristic algorithm, to 

control local search strategies 

and operators. This combination 

allows for a more 

comprehensive exploration of 

the solution space. 

The described approaches, 

especially Ant-HH, might be 

complex due to the integration 

of components like pheromone 

deposition, heuristic knowledge, 

and two-tiered graphs. This 

complexity could potentially 

impact the algorithm's ease of 

implementation and 

understanding 

Turky et al., (2020) Introduction of parallel late 

acceptance hill-climbing 

algorithm (P-LAHC). 

Utilization of evolutionary 

principles to escape local 

optima. 

Simultaneous execution of 

The performance of these 

algorithms could be sensitive to 

the tuning of parameters, and 

finding optimal parameter 

values might require additional 

effort. 
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multiple LAHC processes to 

enhance search quality. 

Mitigation of local optima by 

starting with different initial 

individuals. 

Incorporation of mutation 

operators to prevent search 

stagnation. 

 

4.5 Hybrid Approaches  

Lopes et al., (2015) introduced a hybrid methodology that combines Iterated Local Search and Integer 

Programming (IP) to enhance solution quality in production scheduling. The approach incorporated 

specialized Shift and Swap operators for load sorting, focusing on machines and processes. The 

concept aimed to minimize Load Cost by prioritizing higher load cost processes. A "Swap in Service" 

operator was introduced to the Swap operator, ensuring perturbations adhere to dependency, spread, 

and conflict criteria. The methodology, known as Integer Programming – Restricted Iterated Local 

Search (IP-RILS), employed IP and Branch and Bound techniques to address sub-problems. 

Experimental results on problem instances B and X demonstrated that IP-RILS achieved optimal 

solutions, yielding zero best-known answers. 

Souza, Grimes, and O’Sullivan (2023) proposed an innovative Large Neighborhood Search (LNS) 

approach enhanced by a domain-specific heuristic for selecting neighbourhoods. This heuristic 

capitalizes on resource utilization imbalances among machines to identify promising processes 

strategically. Unlike conventional heuristics, this approach exploits problem-specific characteristics 

for more efficient solutions. Two distinct search strategies emerged for optimizing sub-problems in 

the Machine Reassignment Problem. The first strategy adapts Limited Discrepancy Search (LDS) to 

handle large-scale instances. The second strategy combines constraint programming and random 

restart strategies, aiming for diverse and effective search trajectories. 

4.6 Ranking Overview Method  

The ranking process scheduled during the challenge takes into cognizance the reference solution. The 

reference solution, where no process is reallocated, is trivial. Both the qualification and final stages 

employed the same ranking scheme. Team scores were calculated as the difference between their and 

best costs, divided by the reference solution's cost (Afsar, Artigues, Bourreau, and Kedad-Sidhoum, 

2016). The qualification phase aggregated scores across dataset A instances. The final phase's 

cumulative score came from summating scores over B and X datasets. Qualification required a 100% 

score. Figure 1 graphically represents scores and qualifying teams, denoted by "S" for Senior and "J" 

for Junior teams. Junior teams consist exclusively of non-PhD students. No additional Senior teams 

registered. Table 3 details qualified team composition and outcomes during qualification, providing 

further insight. 
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Figure 2: Candidate Qualification Stage Scores. 

In the final phase, the eligible participants were required to handle instances of significantly greater 

magnitude. Out of the teams that met the necessary qualifications, a total of 27 teams submitted their 

program for evaluation. 

 

Figure 3: Final phase candidate scores. 

Figure 4 is a graph depicting the breakdown of the years in which the various examples of literature 

were published. Publications per year are plotted along the y-axis, while years make up the x-axis. 

The graph depicts the fluctuating contribution rate over the years. The number of donations received 

in a given year is represented by the height of the bar for that year. 

 

Figure 4: Author contributions on GMRP over the years. 
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4.7 Summary of Best Solutions 

Table 5: Algorithm mapping for the GMRP approaches. 

Best-Method Mapping 

ANT-HH    

HH    

HC-LNSHC    

VNS    

OBH    

NLS    

CHSA    

MS-ILS    

LNS-CP    

LNS-MIP     

MNLS     

MNGD     

EM-LNSHC     

SD-Combined     
 

Table 5 presents a mapping for each best-known algorithm for the GMRP problem. The mappings are 

denoted by        Correspondently, Table 6 considers the best-known algorithm mapped from Table 

1 as the reason for presenting the most prominent solutions during and after the competition from the 

literature reviewed. 

Table 6: Summary of literature for GMRP. 

Instance Best Known Mapped Algorithm 

A1-1                     ,  ,      ,  ,       ,    

A1-2                       

A1-3                    

A1-4                       

A1-5                       

A2-1 161    

A2-2                    

A2-3                     

A2-4                     

A2-5                    

B-1                     

B-2                     ,     
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B-3                    

B-4                      

B-5                       

B-6                     

B-7                       

B-8                     

B-9                       

B-10                       

X-1                       

X-2                        

X-3                

X-4                     

X-5                

X-6                     

X-7                       

X-8                

X-9                       

X-10                          
 

The provided results present the outcomes of different algorithms applied to the GMRP for various 

instances based on the research conducted by this study. The results highlight the best-known 

solutions achieved by each algorithm for each instance. For instance, A1-1, the best-known solution is 

              . Multiple algorithms, including HH,      ,  ,      ,  ,       , 

      were employed, indicating a variety of approaches used to tackle this instance. Instance A1-2 

exhibits a best-known solution of              .  Here,          algorithms were utilized, with 

   proving effective in finding competitive solutions. The results for A1-3, A1-4, and A1-5 showcase 

that    consistently performed well in generating solutions for these instances, with best-known 

solutions of                ;                ; and                 respectively. Moving 

on to instance A2-1, the ANT-HH algorithm produced a solution of 161, demonstrating its success in 

this particular case. In instance A2-2,    achieved the best-known solution of                 

indicating its effectiveness in larger instances as well. For instance, in A2-3, NLS achieved a solution 

of                  suggesting its applicability to more complex cases. Instances A2-4 and A2-5 

once again highlight the strength of the    algorithm with solutions of                  and 

                respectively. Instances B-1 through B-10 demonstrate varying best-known 

solutions, with   ,    ,    ,   , and   algorithms showing their effectiveness in addressing these 

instances. Instances X-1 through X-10 further showcase the application of different algorithms, with 

  ,  ,  , and    producing competitive results across various instances. Overall, the results 

illustrate the diversity of algorithms utilized to tackle the GMRP, with some algorithms consistently 

outperforming others across different instances. This provides insights into the strengths and 
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weaknesses of different approaches when addressing combinatorial optimization problems like the 

GMRP. 

5. Conclusion 

This paper meticulously surveys a spectrum of algorithms employed by numerous researchers over 

time to address the GMRP. The research landscape unveiled through this survey reflects a rich 

tapestry of methodologies designed to confront the intricate challenges inherent in cloud machine 

resource allocation and optimization. Heuristic approaches, notably Simulated Annealing (SA), Local 

Search (LS), and Evolutionary Algorithms, along with innovative techniques like population-based 

algorithms, have played pivotal roles in effectively addressing the complexities of GMRP. 

Integrating these heuristics with parallel computing and domain-specific insights has yielded notable 

improvements in convergence rates and solution quality. Population or multi-point algorithms such as 

the Ant Algorithm, Evolutionary Simulated Annealing, and Hyper Heuristics have demonstrated their 

effectiveness in enhancing GMRP solutions. A nuanced analysis of contributions over time reveals 

dynamic trends, showcasing varying research output that reflects the field's responsiveness to 

emerging challenges. 

In summary, the survey underscores the evolving nature of GMRP research, emphasizing the 

amalgamation of heuristic algorithms, optimization techniques, and domain-specific considerations in 

tackling the intricacies of resource allocation. As computational capabilities continue to advance, the 

exploration of GMRP promises to deliver even more refined solutions, thereby enriching optimization 

and resource management practices. In conclusion, future research endeavours should contemplate the 

adaptation of population-based algorithms, with a strategic focus on algorithms with fewer parameters 

to reduce complexity. The Jaya algorithm, for instance, stands out as a viable option for researchers 

exploring avenues to enhance GMRP solutions. 
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