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ABSTRACT 

This paper investigates Bayesian estimation techniques for deriving parameters of the Power 

Function Distribution (PFD) through the utilization of Ranked Set Sampling (RSS). We 

present both maximum likelihood and Bayesian approaches for parameter estimation 

employing RSS. Additionally, we establish asymptotic and bootstrap confidence intervals for 

the parameters. Bayesian estimators are computed utilizing squared error loss functions, 

weighted squared error loss functions, and M/Q squared error loss functions employing the 

Lindley approximation and importance sampling techniques. Furthermore, we forecast future 

samples based on RSS. Finally, we conduct reliability simulations to compare all proposed 

Bayesian estimation methods and analyze a real dataset for illustrative purposes. 

1. Introduction 

Various parametric models hold significance in lifetime analysis and the study of failure processes. 

Among these, the Power Function Distribution stands out as a simple yet effective model for 

evaluating component reliability and often exhibits superior fitting characteristics for failure data 

(Bashir and Khan, 2023).  

The Power Function Distribution holds importance due to its frequent application in daily life, with 

many distributions such as Rayleigh, gamma, and Weibull distributions being related to it. For 

instance, Sultan et al. (2000) discuss its application in assessing the reliability of electrical 

components and semiconductor devices, suggesting that PFD parametric estimators can be 

instrumental in simulating the reliability enhancement of complex or repairable systems. Zarrin et al. 

(2013) applied the power function distribution to analyze component failures, employing both 

maximum likelihood and Bayesian estimation techniques. Additionally, Meniconi and Barry (1996) 

argued for the superiority of PFD in evaluating the reliability of electrical components compared to 

exponential, lognormal, and Weibull distributions. 

For comprehensive insights into inference using PFD, interested individuals can consult Belzunce  

et al. (1998), Abdul Sathar et al. (2015), Abdul-Sathar and Sathyareji (2018), Abdul-Sathar and 

Athira Krishnan (2019), AbdulSathar (2021), and Abdul-Sathar and Sathya Reji (2022), along with 

the references therein. Meniconi and Barry (1996) proposed expressions for the cumulative 

distribution function (CDF) and probability density function (PDF) of the PF distribution, given as 

follows: 
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                (1.2) 

where α and β denote the shape and scale parameters, respectively. 

Ranked Set Sampling (RSS) emerges as a cost-effective method that is particularly beneficial when 

quantifying all sampling units, which is prohibitively expensive. It involves ranking a small subset of 

units according to the characteristic under study, as initially proposed by McIntyre (1952) for 

estimating the average pasture yield. RSS has found widespread applications across various domains 

including agriculture, forestry, sociology, ecology, environmental sciences, and medical studies. 

McIntyre's (1952, 2005) work validates RSS as an unbiased estimator for population means. 

Key references discussing RSS include the theoretical framework by Chen et al. (2004) and Latpate  

et al. (2021)'s presentation of Advanced Sampling Methods.  Numerous studies have employed RSS 

to estimate parameters in various distributions. For instance, Joukar et al. (2021) applied it to the 

exponential-Poisson distribution, Obeidat et al. (2020) to the Gompertz distribution, Basikhasteh et al. 

(2021) to the bathtub-shaped lifetime distribution, Yang et al. (2020) to the log-extended exponential-

geometric distribution, Chandra et al. (2016) to the lognormal distribution, Chandra and Tiwari 

(2012) to the location and scale parameters of the lognormal distribution, and Tiwari et al. (2015) to 

the location and scale parameters of the normal distribution. This study aims to compare PFD 

estimators derived from the RSS scheme with those obtained from the SRS scheme with unequal 

samples. 

The Ranked Set Sampling (RSS) Scheme presents a sampling methodology that offers a more 

representative sampling of population data compared to methods like Simple Random Sampling 

(SRS) with an equivalent number of observations. RSS involves the following steps to obtain a 

sample of size n from a population: 

i) Begin by randomly selecting m
2
 units from the population, which are then allocated randomly into 

m sets, each containing m units. 

ii) Rank the m units within each set either visually or using a cost-effective method based on the 

variable of interest.   

iii) Measure the smallest ranked unit from the first set, followed by the second smallest ranked 

unit from the second set, and so forth until the m
th
 smallest unit (the largest) is measured from 

the last set.  

iv) Optionally, repeat this procedure n times to augment the sample size to mn. 

McIntyre (1952) initially introduced ranked set sampling (RSS) to estimate mean pasture yields, 

highlighting its superior efficiency over simple random sampling (SRS) for population mean 

estimation. The one-cycle RSS involves the initial ranking of m samples of size n as follows: 

                                         

                                        
 

                       
                      

                                         

where n cycles produce a sample of size A = nm, and                                 

denotes the     
order statistics from the     

SRS of size n. The resulting sample is called a one-
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cycle RSS of size m (Arnold and Balakrishnan (1992)). The joint probability distribution function 

(PDF) of an RSS is given by 

              
  

             
 
                

   
               

   
          

 
        (1.3) 

where                                         and f and F are the PDF and CDF of a 

random variable X. The cycle can be repeated n times until A = nm units are quantified. 

The subsequent sections of this paper are structured as follows: Section 2 discusses maximum 

likelihood estimation (MLE), asymptotic, and bootstrap confidence intervals for the PFD using RSS.  

Section 3 explores Bayesian estimation of PFD parameters, employing various loss functions for 

parameter estimation. This section includes the application of importance sampling procedures and 

Lindley approximation methods to simplify the ratio of integrals within the proposed Bayes estimators 

of the parameters. The section also introduces the Highest Posterior Density (HPD) credible interval. 

Additionally, it addresses the problem of predicting future sample values from the PFD using RSS.  

Section 4 evaluates the performance of the estimators through simulations and real-life data samples.  

Finally, the conclusion is presented in Section 5. 

2. Maximum Likelihood Estimations 

Maximum Likelihood Estimation (MLE) is a statistical method used to estimate parameters of 

probability distributions. In MLE, parameters are chosen to maximize the likelihood of observing 

the given data under the assumed probability distribution. This section discusses the estimation of 

parameters of the Power Function Distribution (PFD) using the Maximum Likelihood (ML) 

estimation method under Ranked Set Sampling (RSS). 

a) Estimation Based on RSS 

Consider a sample                                                       from the PFD 

obtained via RSS, with PDF given in (1.1). By substituting equations (1.1) and (1.2) into equation 

(1.3), the likelihood function of a sample from the PFD using RSS is expressed as: 

             
              

      
    

         

 
 
 

 
   

                       
            

     

 

   

 

   

 

                    
 

   
  

 

           
      

    
         

 
 

 

 

   

 
   

 
    

          
             

   
 
   

       (2.1) 

From (2.1), the log-likelihood function of α and β are respectively given by 
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The MLE of α and β are obtained by solving the following normal equations: 
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The MLE of the parameters α and β respectively can then be obtained as the solution of the 

following normal equations 

          

  
    (2.2) 

and 

          

  
     (2.3) 

 

Thus from (2.3), we have 

                                                  (2.4) 

  

On substituting (2.4) into (2.2), we obtain: 
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The Maximum Likelihood Estimator (MLE)   of α can be obtained as a solution of the non-linear 

equation of the form       , where: 

                       
 

 
               

               

                                    

 

   

 

   

 

   

 

   

             
       

       
  

       

       
 

 

  

 

   

 

   

  

Let    be the ML estimator of α by solving the non-linear equation g(α) = α and then using 

equation (2.5), the ML estimator of α will be given by 

                                                (2.5) 

i) Asymptotic Confidence Interval 

The analysis of confidence intervals for the parameters and the asymptotic properties of the Maximum 

Likelihood Estimator (MLE) was conducted as Lawless (1982) outlined. The observed Fisher 

information matrix is defined as the matrix of second partial derivatives of the negative log-likelihood 

with respect to the model parameters, given by: 

                            

where 

              

           

   

           

     

           

      

           

   

 , 

Hence, a 100(1 − γ)
0
/0 confidence interval of the model parameters is given by: 

         
  
   

           
  
   

     

and 

         
  
   

           
  
   

     

Additionally, the coverage probability is defined as: 

         
            

             

    
  
 , 

where   
   and   

   are the diagonal elements of the observed Fisher information matrix I
−1

(α, β), 

and   
  
 is the  

 
   

  
quantile of the standard normal distribution. 
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b) Estimation Based on SRS 

Consider            as a simple random sample (SRS) from a Power Function Distribution 

(PFD) with parameters (α, β), and the PDF given by equation (1). The likelihood function (L) and 

the log-likelihood function (l) are defined as: 

                  

 

   

  

   
               

 
    

And 

                                                      

 

   

 

Calculate the first derivatives of           with respect to α and β. The Maximum Likelihood 

Estimates (MLEs) of α and β can be obtained by solving the following equations: 

          

  
 

 

 
                 

 

   

     

          

  
  

  

 
               

and 

          

    
 

          

    
  

 

 
  

Similarly, the interval estimate of the asymptotic distribution can be calculated using the 

maximum likelihood estimator values of the parameters α and β. We know that the expected 

Fisher information matrix     , when         is given respectively as: 

              
      

      
    

          

   

           

     

          

      

          

   

 , 

where       denotes the joint PDF of           . We consider the confidence intervals (CIs) 

under the SRS scheme based on maximum likelihood estimation. The second derivates of 

         can be expressed as: 

                

   
 

 

  
        

                

   
 

  

  
                  

and 

                

     
 

                

     
            

Belzunce et al. (1998) obtained the ML estimates of the parameters of PFD and are given 

respectively by:  
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where                                                

The asymptotic distribution of the Maximum Likelihood Estimators (MLEs) of   and  , denoted 

by            and            respectively, is a bivariate normal distribution. In other words, if 

    then we have: 

                                             

where        is the inverse matrix of     . One may replace the parameters that may appear in 

      with their corresponding MLEs to obtain an estimator of       , which can be denoted by 

       .  

Therefore, the           asymptotic two-sided equi-tailed (ATE) confidence intervals (CIs) 

for   and   are given by: 

         
  
             

  
       

and 

         
  
             

  
       

respectively, where     and     are the diagonal elements of       ,  and   
  

 is the  
 

   
  

 

quantile of the standard normal distribution.  

Also, the coverage probability for           is given as: 

         
                      

                  

    
  
 , 

where            represents the variance-covariance matrix of            

c) Bootstrap Confidence Interval 

In this section, we discuss the percentile Bootstrap (Boot-p) confidence interval proposed by Efron 

(1982). The Boot-p confidence interval can be described as follows: 

i) Select a random sample (whether RSS or SRS) from the population and obtain the Maximum 

Likelihood Estimator    
of the parameter         as discussed in section 2. 

ii) Based on the specified sampling scheme (RSS or SRS), generate a bootstrap random sample 

from the Power Function Distribution (PFD) with parameters   . 
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iii) Obtain the Maximum Likelihood Estimator of the model parameters based on the bootstrap 

sample and denote this bootstrap estimate by      

iv) Repeat the second and third steps above N times to obtain    
    

 
       

   
v) Arrange the above estimates in ascending order to obtain the ordered estimates 

   
      

 
         

     

vi) A confidence interval with confidence level           is constructed using the     
 

    

and       
 

    empirical percentiles of the bootstrap estimates obtained in the previous 

step. 

Selection of the loss function is an important part of the Bayesian setup, and we also use different loss 

functions to measure the estimators. Three loss functions are used to obtain the point Bayes 

estimators. The first one is the squared error loss function (SELF) (refer to Berger (1985) and Box 

and Tiao (1973)), where the estimator is the posterior mean. Let     
be an estimate of θ, then the SELF 

is defined as: 

                
 
  

The Bayes estimator of θ using SELF (Ali et al. (2013)) is given by: 

               (2.6) 

The SELF is a symmetrical loss function that assigns equal losses, overestimation, and 

underestimation. The SELF is a frequently used symmetric loss function because it does not lead to 

extensive numerical computation. The second loss function is named the weighted squared error 

loss function (WSELF), which gives the squared error loss function a weight. Also, the weight will 

affect the estimated parameter value. The weighted squared error loss function (WSELF) is an 

asymmetric loss function that is a weighted version of the symmetric SELF. It is defined as: 

         
      

 

 
  

The Bayes estimator of θ using WSELF (Ali et al. (2013)) is given by: 

            
  

        (2.7) 

Also, the third loss function is named as modified/quadratic squared error loss function (M/Q 

SELF). A well-known asymmetric loss function and is a modified version of the commonly used 

symmetric loss function, SELF and is given by: 

            
  

 
 

 

  

The Bayes estimator of θ using M/Q SELF (Ali et al. (2013)) is given by: 
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   (2.8)                                                                                         

3. Bayes Estimation 

The Bayesian method has proven very useful when the sample size is small. Hierarchical models are 

one of the central tools of Bayesian analysis. Bayesian models consist of the likelihood function and 

the prior distribution. The likelihood function is constructed from the data’s sampling distribution, 

which describes the probability of observing the data before the experiment. The prior distribution 

describes the uncertainty about the parameters of the likelihood function. After observing the data, the 

prior distribution is updated to the posterior distribution. 

Parameter estimation using Ranked Set Sampling (RSS) differs from Simple Random Sampling 

(SRS) in derivations and offers distinct advantages. In SRS, individual items are randomly selected 

without specific ordering, and estimators are derived based on standard statistical methods. In 

contrast, RSS involves selecting samples in ordered sets based on a criterion like the magnitude of the 

variable estimators in RSS. 

In this section, Bayesian estimates and credible intervals of the parameters are obtained using Markov 

chain Monte Carlo Methods (MCMCs) using RSS. In Bayes’ estimation, the unknown parameter is 

treated as a random variable and assumes a distribution known as the prior distribution. Loss 

functions and selection of the prior distribution of parameters are two important components of 

Bayesian analysis. Here, we use the piecewise independent gamma priors for the parameters α and β 

and are given by:  

                                             (3.1) 

where             are the hyper parameters. 

Using (2.1) and (3.1), the joint posterior distribution based on RSS is given by: 

                                                  (3.2) 

where  
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The Bayes estimators of the parameter         based on RSS using SELF, WSELF and M/Q 

SELF are given as follows: 
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where           is given (3.2). Various methods are used here to evaluate the estimates obtained in 

this section and the preceding sections. First, we use Lindley’s method, which explains how to 

calculate the ratio of integrals, which cannot be further simplified to closed forms. We also use 

important sampling methods to address the above ratio of integrals, which are discussed in the 

following sections. 

a) Lindley Approximation Method 

In this section, we calculate the Bayesian estimation utilizing the loss function for the α and β 

parameters of the Probability Density Function (PDF) based on Ranked Set Sampling (RSS). 

Approximation methods are employed to resolve the ratio of integrals. One of the simplest methods is 

the Lindley approximation method, as published by Lindley (1980). Below is the Lindley 

approximation method for deriving Bayesian estimates of α and β within the function I(x). 

     
                                

                          
  

The approximate calculation of the ratio of integrals is provided below: 

            
 

 
                                             

                 
 

 
                                    

where        is a function of                is the log-likelihood,        is the log joint prior, 

       is the derivatives of         and        is the inverse of the likelihood function. Here, we 

denote: 
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i) Parameters Using RSS 

To begin, we can calculate the Bayesian estimate of   ourselves. Using this SELF: 

                                      

Here is a Bayesian estimate of   used by SELF: 

                      
 

 
                

Next, the estimate of   is: 

                       
 

 
                

Subsequently, the estimate of the WSELF of   is given as follows: 

                                               

             
 

 
                       

 

 
                   

Additionally, the Bayesian estimate of   is given as follows: 

             
 

 
                       

 

 
                   

Another estimate of the   used by M/Q SELF is given as follows: 

           
      

                                 

   
 
         

      
 

    
   

 

 
               

Similarly, the Bayesian estimate of   is: 

   

 
         

       

       
 

 
               

b) Importance Sampling Procedure 

In this section, we explore the significance of the sampling method in computing the ratio of integrals 

for determining parameter estimates in the Probability Function Distribution (PFD) using the 

combined posterior distribution based on Ranked Set Sampling (RSS). Additionally, we calculate the 

Highest Posterior Density (HPD) credible intervals for the parameters of interest. 

i) Combined Posterior Distribution with RSS 

The combined posterior distribution of the parameters is expressed as the product of the terms: 

                                     

Here, the functions                    , and         are defined as follows: 

          
                     

                  
              

 
                                 

   
 
    

  

 (3.3) 

                        
 

 
                               

 
   

 
       (3.4) 

and 

                           (3.5) 

Thus, the Bayes estimates of the parameters         using the importance sampling procedure 

involve the following steps: 
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i) Generate    from the distribution               

ii) Using the generated    value, generate   from the distribution               

iii) Repeat steps 1 and 2,   times to obtain the important sample procedures 

                          
     

 . 

Subsequently, the Bayesian estimators of the           under different loss functions such as SELF, 

WSELF and M/Q SELF can be expressed as follows; 

        
   

  
             

          
  
    

  

          
     

    
             

          
  
    

 

  

 

    

   

 
      

 
 
 
 
 
      

   
  

 
 

  
    

  
             

          
  
    

 
 
 
 
 
 

  

Here                 are as defined by equation (3.3). 

c) Highest Posterior Distribution 

In this section, we establish the Highest Posterior Density (HPD) credible intervals for the parameters 

α and β based on Ranked Set Sampling (RSS). The methodology for constructing HPD credible 

interval was introduced by Chen and Shao (1999). 

i) Credible Interval using RSS 

Let                  where     and     for δ = 1, 2, ..., M2 are posterior samples generated from 

equations (15) to (16) for α and β. Let    
 and     be the ordered values of                , respectively. 

Define 

   
        

   

            
  
   

             

The    quantile of   can be estimated as: 

    

 
 

 
                                      

                                  

 

   

   

   

           
  

where    
 

  
 

   
             

  
 

              represents the greatest integer function. Similarly, 

the              HPD credible interval for   can be constructed. 

d) Prediction 

This section discusses the prediction method using RSS when both parameters of the Probability 

Function Distribution (PFD) are unknown. Let             be an independent sample of size  . 

To predict the future sample                   based on RSS, the density function of    is 

given by: 
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    (3.6) 

i) Prediction Intervals Based on RSS 

Using equations (3.2) and (3.6), the predictive density function of    is given by: 

  
  

        
  

                      
 

 

 

 
  (3.7) 

where the integration is over the entire domain. Hence, the predictive survival function is given by: 

             
  

       
 

 
    (3.8) 

Therefore, the lower and upper 100(1 − γ) 
0
/0 prediction bounds [L(x), U(x)] for    are obtained by 

equations 
     

 
 and 

     

 
, respectively. From equation (3.7), the predictive Bayesian estimator using 

different loss functions of               can be obtained as:  

  
           

  
         

  
          

     
  

        
  

 

    

  
         

   
     

  
 

    
  

         

where   
  

    is given by equation (3.7). 

4. Simulation Study 

In this section, we evaluate the performance of the proposed estimators using simulated data. Data 

were generated from a Probability Function Distribution (PFD) with parameters                   

respectively. The hyperparameters are set as                                      

respectively. The outcomes of the simulation study to assess the estimators’ performance are 

presented in Tables 1-5. 

According to Table 1, the proposed estimators' Mean Squared Error (MSE) decreases as the number 

of samples increases. However, in Table 2, the MSE of the proposed estimators increases with the 

number of samples. Moreover, Tables 3-5 demonstrate that the MSE of the proposed Bayes 

estimators increases with the number of samples. Additionally, Table 5 shows that the prediction of 

  under different loss functions decreases as the number of samples increases. We compute the 

Bayes estimators using Squared Error Loss Function (SELF), Weighted Squared Error Loss Function 

(WSELF), and Modified/Quadratic Squared Error Loss Function (M/Q SELF). We replicate the 

process 1000 times and compute the average bias and MSE. 
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Table 1: Bias and MSE for MLE and AIL and CP for CI of the parameters α and β of PFD using 

SRS. 

                

m Estimate  MLF Confidence Interval 

Bias MSE Bootstrap Asymptotic HPD 

    CP AIL CP AIL    

20       0.1137 0.0784                                           

20       0.0609 0.0059                                           

                

m Estimate  MLF Confidence Interval 

Bias MSE Bootstrap Asymptotic HPD 

    CP AIL CP AIL    

40       0.1362 0.0073                                           

40       0.0291 0.0013                                           

 

Table 2: Bias and MSE for MLE, AIL, and CP for CI of the parameters α and β of PFD using RSS. 

                

m×n Estimate  MLF Confidence Interval 

Bias MSE Bootstrap Asymptotic HPD 

    CP AIL CP AIL    

2×10       0.3175                                                  

2×10       0.3311                                                  

                

n×m Estimate  MLF Confidence Interval 

Bias MSE Bootstrap Asymptotic HPD 

    CP AIL CP AIL    

4×10       0.1455                                                  

4×10       0.5768                                                  
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We can report the following points from the numerical results of Tables 1-5. 

i) As the sample size gets large, the MLE method tends to perform almost the same based on RSS 

and SRS. 

ii) With the increase in sample size and number of samples, it can be observed that, in all cases, the 

bias and MSE of the estimates increase, as expected. 

iii) The average length of the approximate confidence intervals decreases as the sample size 

increases, while the coverage probability remains around 0.95. 

iv) It can be observed that the Bayesian estimator outperforms the MLE regarding bias and MSE. 

The Bayesian estimators incorporate more information in the form of prior information compared 

to MLE. 

Table 3: The Lindley approximation method using RSS are the average and MSE of Bayes 

estimators of        . 

                

n×m Estimate SELF WSELF M/Q SELF 

Bias MSE Bias MSE Bias MSE 

2×10                0.20112          0.29234          0.01197 

2×10                0.15244          0.15259          0.10173 

                

4×10                0.29217          0.37904          0.16377 

4×10                0.15951          0.15994          0.14461 

 

Table 4: The importance sampling procedure using RSS are the average and MSE of Bayes 

estimators of         

                

n×m Estimate SELF WSELF M/Q SELF 

Bias MSE Bias MSE Bias MSE 

2×10       0.49976 0.22487 0.36999 0.22689 0.46052 0.21764 

2×10       0.49999 0.22481 0.51000 0.22801 0.49990 0.22481 

                

4×10       0.14995 0.24976 0.14949 0.23349 0.46984 0.22972 

4×10       0.15000 0.22499 0.15100 0.26010 0.14998 0.24990 
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Table 5: The Average and MSE of Bayes estimators of    of prediction using RSS. 

                

n×m Estima

te 

SELF WSELF M/Q SELF 

Bias MSE Bias MSE Bias MSE 

2×10         0.49570 0.24572 0.52259 0.27310 0.40986 0.16799 

2×10         0.49987 0.24987 0.50978 0.25987 0.48890 0.23902 

                

4×10         0.14918 0.22254 0.15000 0.22500 0.14783 0.11853 

4×10         0.14995 0.22486 0.14648 0.21458 0.14539 0.21138 

5. Numerical Example 

In this section, we examine the ranked set sampling data provided by Hettmansperger and McKean 

(2010), representing the lifetimes of an insulating fluid. Table 6 presents the breakdown time (in 

minutes) of an electrically insulating fluid under two different voltage levels, 30 and 32 kV. 

We conducted various tests and estimation techniques on the two data samples obtained from the 

study by Hettmansperger and McKean (2010). These datasets reflect real-life scenarios, illustrating 

the breakdown times of an electrically insulating fluid under different voltage conditions. The values 

in each row under "Times to Breakdown (Minutes)" likely signify the durations until breakdown for 

individual instances or trials under the specified voltage. 

We assessed the adequacy of the Probability Function Distribution (PFD) for the first sample using 

the Kolmogorov-Smirnov (KS) test. The test yielded a p-value of 0.259626, which suggests that the 

distribution fits well (p > 0.05). Similarly, for the second sample, the KS test yielded a p-value of 

0.163194, indicating a good fit of the distribution to the data (p > 0.05). 

Next, we applied Maximum Likelihood Estimation (MLE) to fit the PFD to the first dataset and 

estimated the parameters to α = 0.0051 and β = 0.6894. Similarly, for the second dataset, the MLE 

estimated the parameters to α = 0.0046 and β = 0.3182.                     

Table 6: The breakdown times (in minutes) of an electrical insulating fluid 

 
Voltage Times to Breakdown 

(Minutes) 

30 kV 17.05 22.66 21.02 175.88 

139.07 144.12 20.46 

43.40 194.90 47.30 7.74 

32 kV 0.40 82.85 9.88 89.29 215.10 

2.75 0.79 15.93 

3.91 0.27 0.69 100.58 27.80 

13.95 53.24 
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Table 7-8 presents the estimates derived from sections 2-3, focusing on the annual wage data. The 

tables illustrate the Maximum Likelihood Estimation (MLE) and Bayesian estimators of α and β for 

various loss functions. Hyper-parameter values                                     were 

selected for Bayes estimation. 

The MLE and Bayes estimates under different loss functions are detailed in Tables 7-8. Notably, the 

results obtained from the actual data align with those from the simulation study, demonstrating the 

robustness and reliability of the estimators. Moreover, in scenarios where samples are available only 

in the form of ranks, the ability to predict the rank is highlighted, showcasing the versatility and 

applicability of the proposed methodologies. 

Table 7: MLE and Bayes estimate of parameters using the real data for lifetimes of an insulating 

fluid. 

Level 1: α = 0.0051 and β = 0.6894 

n×m Estimation Prediction 

 -     AIL CP     ISP         L(X) U(X) 

1×11              - - - - - - - 

1×11              - - - - - - - 

1×11      -              - - - - - 

1×11      -              - - - - - 

1×11        - - -               - - - 

1×11        - - -               - - - 

1×11         - - -               - - - 

1×11         - - -               - - - 

1×11    

 
     - - -               - - - 

1×11    

 
     - - -               - - - 

1×11          - - - - - 0.5815 0.2692 1.1263 

1×11           - - - - - 0.2236 0.6560 1.3269 

1×11      

 
     - - - - - 0.3241 0.4773 1.2258 
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Table 8: MLE and Bayes estimate of parameters using the real data for lifetimes of an insulating 

fluid. 

Level 2: α = 0.0046 and β = 0.3182 

n×m Estimation Prediction 

 - MLE AIL CP LAM ISP         L(X) U(X) 

1×11       0.1100 - - - - - - - 

1×11       0.6317 - - - - - - - 

1×11      - 2.362        - - - - - 

1×11      -              - - - - - 

1×11        - - -               - - - 

1×11        - - -               - - - 

1×11         - - -               - - - 

1×11         - - -               - - - 

1×11    

 
     - - -               - - - 

1×11    

 
     - - -               - - - 

1×11          - - - - -                      

1×11           - - - - -                      

1×11      

 
     - - - - -                      

 

In conclusion, the utilization of Bayesian modeling has yielded significant benefits, demonstrating its 

potential applicability in various situations beyond the scope of this study. 

6. Conclusions 

In conclusion, this paper delves into the estimation of Probability Density Function (PFD) parameters 

using both Maximum Likelihood Estimation (MLE) and Bayesian estimators within the context of 

Ranked Set Sampling (RSS) design. The practicality and effectiveness of the proposed Bayesian 
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modeling, coupled with Markov Chain Monte Carlo (MCMC) estimation, are demonstrated through 

comprehensive analyses of simulated and real data. 

Specifically, the study highlights that Bayesian estimators under various loss functions, such as 

Squared Error Loss (SEL), Weighted Squared Error Loss (WSEL), and Modified/Quadratic Squared 

Error Loss (M/Q SEL), entail the computation of ratios of two integrals. Furthermore, the highest 

posterior density interval, as computed using the method of Chen and Shao (1999), adds another layer 

of robustness to the analysis. 

Analysis of both simulated and real data indicates that Bayesian estimators outperform MLE in terms 

of efficiency under different loss functions. Particularly, Bayesian estimators based on ranked set 

sampling with samples exhibit superior efficiency compared to those based on simple random 

sampling. 

In summary, the results from simulation experiments underscore the efficacy of estimators based on 

ranked set sampling, affirming their superiority over MLE with Bayesian estimates derived from 

simple random sampling. This study contributes to advancing the understanding and application of 

Bayesian modeling in statistical estimation, particularly in scenarios involving ranked set sampling. 
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