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ABSTRACT 

The process of parameter estimation in order to Characterise a population 

using Method of moments and MLE is well known and popular. The 

purpose of this article is a little different in estimating the parameters for 

Beta distribution of first kind by the partial information available, and 

when the partial information is available, how should the parameter be 

estimated? If estimated, how far can these parameters be considered good 

enough when compared with the estimators obtained by using the full 

sample information. In this present study we explored the parameter 

estimation by “Local Frequency Ratio Method” to estimate the parameters 

and found that this method estimates the parameters effectively with less 

information as compared with standard estimation procedure. 

1. Introduction 

In the study and use of data science problems, it is always important to give the 

best possible description of the data and its parameter estimations by various 

methods being looked at. Recent research has shown how the statistical 

distributions can be used to model data in applied sciences especially in medical 

sciences. Statisticians often explore new statistical methodologies to suit the 

existing distributions and data sets in diverse domains. Statistical 

models/methods are very useful in describing and predicting a real phenomena. 

Many distributions have been widely used for data modeling in several domains 

during the last decades. Recent developments focus on defining new families that 

extend well known estimation procedures and at the same time provide a great 

flexibility in various estimations in practice. These procedures are quite helpful 
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and better understanding in many fields of virus spreads, in particular Covid-19 

etc. 

By Hogg and Tanis (2001), estimation is defined as a process of assigning 

numerical values to the parameter that is to be estimated based on a sample 

observations following a specified distribution. The function of the sample value 

used for this purpose is a statistic and is considered as a specified function of the 

parameter or taken as the parameter value of the distribution. This statistic which 

is being used so far is called an estimator of the parameter and the particular 

value obtained from the data using this estimator is called an estimate.  

Estimators themselves are random variables having their own probability 

distribution. 

Estimation of parameters in general are based on the complete information of 

sample under study. However, it is also possible and often necessary to construct 

estimators based on partial information available from samples i.e. by 

information obtained only on sample values which falls into two or few of their 

lines or bins in a frequency distribution ignoring the values falling into other 

regions in the frequency distribution. Estimators are based not on global but on 

local information from the sample. 

This approach is of course not entirely new. Representatively, dealing with the 

problem of estimating the parameters in situations where sample observations are 

censored or truncated can obviously be claimed to belong to this category. But 

any detailed study of such estimation procedure and the properties of such 

estimators do not seem to have been reported so far. The present problem is an 

effort in this direction. 

Our investigation aims at answering the following prominent questions. 

1) Using only local information from different localities (locals) in the sample 

set, how good an estimator of the parameter can one hope to obtain? 

2) How do these estimators compare with the usual, full global sample based 

estimators? 

3) Particularly, when only partial data is considered how the local information 

estimator compares with the global estimators that takes into account the 

entire sample. 

This paper is Organised as follows. In section 2 we explained the Beta 

distribution of first kind along with various methods of estimation procedures 
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with corresponding illustrations viz, Method of moments and newly introduced 

frequency ratio methods.  

      Section 3 devotes to the explanation of frequency ratio method of 

estimation.Section4 illustrates the computational evidence for different sample 

sizes and different parameters. 

2. Beta Distribution of First Kind 

 The Beta distribution of first kind is defined by the following pdf. 
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                  Where a>0 and b>0 both are shape parameters. 
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Parameter Estimation 

 We are interested in estimating the parameters of the Beta distribution from 

which the sample comes. A few estimation methods are outlined below. 

Method of Moments 

Under this method, we equate the sample mean and variance with the 

distribution‟s theoretical expected value and variance. We obtain two equations 

in two unknowns: 
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Solving these equations yields the following estimators: 
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For Example:  

We generate 50 random samples, each of size 1000 from Beta distribution by 

taking (a=2, b=3) using MATLAB function. For each sample we estimate 

parameters a and b by using above procedure. The Mean, Standard Error   

√   ,      of these 50 estimates were computed. The Estimated bias was 

calculated as the mean minus the true value of the parameter. The Mean Squared 

Error (MSE) was calculated as the bias squared plus the variance. The results are 

shown in the following table. 

Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Frequency Ratio Method of Estimation 

Let y1, y2…….yn   be a random sample from a distribution. From this sample a 

frequency distribution is constructed with an appropriate bin width „h‟. The 

midpoint of these bins are denoted by xi, i = 1,2……. k (number of bins). The 

corresponding frequencies are denoted by fi , i = 1,2….k. Thus   
     

 
 is an 

estimate of the probability of y falling in the corresponding bin „i‟ and is an 

estimate of the probability lying in the interval. Thus  (  )    can be estimated 

by 
  

 
, using the ratios of f(xi)‟s and equating them with corresponding observed 

frequency ratios gives a way of estimating the parameters similar to the moments 

method of estimation. 

 

         Method of Moments 

a b 

Mean 
2.0216     

3.0248 

 

SE 0.1081     0.1562 

√   0.2720     0.7451 

     2.1383     2.8472 

Bias 0.0216     0.0248 

MSE 0.0005     0.0006 
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Let f1 , f2   and f3 are the frequency densities at the points x1,x2 and x3  given by  

1 1
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The ratio of the frequencies f1  and f2  is 
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Taking logarithms on both sides, 
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For notational convenience, let             (
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Similarly, the ratio of the frequencies f2 and f3 is 
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Solving (1) and (2), we get estimates of a and b as 
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Illustration: 

For each of the sample generated above, we construct a frequency Distribution 

given below. 

Table 2 

 

From the above table, f1, f2   and f3  are 168,157 and 155 (first three maximum 

frequencies) and the corresponding midpoints are x1,x2 and x3  . 

Using these frequencies and mid values in the above formulae (3.3) and (3.4), we 

get estimates of a and b as ̂             ̂       

The above procedure is repeated for 50 samples and we get 50 estimates. The 

mean, Standard error  √   ,       of these 50 estimates were computed. The 

estimated bias was calculated as the mean minus the true value of the parameter. 

The Mean Squared Error (MSE) was calculated as the bias squared plus the 

variance. 

Table 3 

                       

 

 

 

 

 

 

 

 

From the above tables, we notice that the actual values of (a, b) and the mean 

estimated values of (a, b) under the frequency ratio method and Method of 

moments are almost same. Therefore, it can be taken as a good estimator. Similar 

x 

(Mid- 

value) 

0.0484 0.1452 0.2419 0.3387 0.4355 0.5322 0.6290 0.7258 0.8225 0.9193 

f 45 116 151 157 168 155 107 63 24 14 

   Frequency ratio 

method 

a b 

Mean 2.0388 3.0659 

SE 1.1239 2.2443 

√   0.3788 0.5050 

     2.5355 2.7952 

Bias 0.0388 0.0659 

MSE 0.0028 0.0094 
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procedure is followed for different sample sizes and different values of (a, b) and 

the results are tabulated in the following tables. 

4.  Comparison of Method of Moments and Frequency Ratio Method for 

           Different   Sample Sizes and Different Parameters 

 

Table 4 : Simulation statistics for beta (1,5). 

(1,5) ns=50 ns=100 
Method of 

moments 

Frequency 

Ratio method 

Method of 

moments 

Frequency 

Ratio method 

 a b a b a b a b 
Mean 0.9939 4.9999 0.9981 5.0960 1.0066 5.0418 1.0087 5.0742 

SE 0.0547 0.2974 0.2353 2.4049 0.0452     0.2689     0.2457     2.4929     

√   0.1738 0.0788 0.0081 0.0049 0.0411     0.0877     0.109       0.0216     

   2.5259 2.3274 2.3978 2.2512 2.3523 2.4176 2.7163 2.9372 

Bias -0.006 0 -0.0019 0.0960 0.0066     0.0418     0.0087     0.0742     

MSE 0 0 0.0001 0.0150 0 0.0018 0.0001 0.0117 

 

Table 5 : Simulation statistics for beta (3, 1 ). 

(3,1) ns=50 ns=100 
Method of 

moments 

Frequency 

Ratio method 

Method of 

moments 

Frequency 

Ratio method 

 a b a b a b a b 
Mean 3.0151 1.0061 3.1538 1.0209 3.0145 1.0095 3.0364 1.0060 

SE 0.1493 0.0451 1.6009 0.2233 0.1766 0.0524 1.6409 0.2286 

√   0.0027 -0.535 0.2121 0.2766 0.9717 0.7116 -0.290 -0.338 

   2.4480 3.508 2.9718 2.722 5.0290 3.7251 2.5931 2.6515 

Bias 0.0151 0.0061 0.1538 0.0209 0.0145 0.0095 0.0364 0.0060 

MSE 0.0003 0 0.0262 0.0005 0.0002 0.0001 0.0040 0.0001 

 

Table 6 :  Simulation statistics for beta (4,3 ). 

(4,3) ns=50 ns=100 
Method of 

moments 

Frequency 

Ratio method 

Method of 

moments 

Frequency 

Ratio method 

 a b a b a b a b 
Mean 4.0283 3.0102 3.999 2.9986 3.9836 2.9692 4.0362 3.0161 

SE 0.1804 0.1381 2.6090 1.7411 0.1746 0.1306 2.1844 1.3516 

√   0.2512 0.3099 -0.0436 0.0270 0.9974 0.8995 0.3054 0.4703 

   2.8736 3.266 2.6150 2.7492 4.9974 4.7166 2.9499 2.8962 

Bias 0.0283 0.0102 -0.0008 -0.0014 -0.016 -0.030 0.0362 0.0161 

MSE 0.0008 0.0001 0.0068 0.0030 0.0003 0.0010 0.0061 0.0021 
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Table 7 :  Simulation statistics for beta (3 ,2). 

(3,2) ns=50 ns=100 
Method of 

moments 

Frequency 

Ratio method 

Method of 

moments 

Frequency 

Ratio method 

 a b a b a b a b 

Mean 2.9663 1.9860 3.0435 2.0235 3.0122 1.9965 2.9463 1.9811 

SE 0.1306 0.0923 2.3736 1.2595 0.1374 0.0949 2.6093 1.3951 

√   0.4621 0.0964 0.0938 0.0434 0.2088 0.0861 -0.399 -0.330 

   2.3359 3.612 2.4233 2.6296 2.1267 2.010 3.0701 3.1817 

Bias -0.033 -0.014 0.0435 0.0235 0.0122 -0.003 -0.053 -0.018 

MSE 0.0012 0.0002 0.0075 0.0021 0.0002 0 0.0097 0.0023 

 

Table 8 : Simulation statistics for beta (5, 1 ). 

(5,1) ns=50 ns=100 
Method of 

moments 

Frequency 

Ratio method 

Method of 

moments 

Frequency 

Ratio method 

 a b a b a b a b 

Mean 5.0836 1.0096 4.9818 1.0011 4.9791 0.9973 5.1635 1.0265 

SE 0.0102 0.0018 0.0526 0.0074 0.0078 0.0014 0.0510 0.0070 

√   0.1310 0.0093 0.4945 0.2647 0.1757 0.1414 -0.149 -0.260 

   3.122 3.688 3.7453 3.4875 2.9967 2.7970 3.412 3.4515 

Bias 0.0839 0.0096 -0.0182 0.0011 -0.021 -0.002 0.1635 0.0265 

MSE 0.0071 0.0001 0.0031 0.0001 0.0005 0 0.0293 0.0008 

 

 5. Conclusions 

For both Estimation methods, the statistical distributions are summarized by its 

mean, standard error, √β1, β2, Bias and Mean Square Error computed from the 

simulated data. Thus, from the empirical study of the type of distribution, the 

estimates computed using the various estimation procedures including the one 

based on full information is reported. 
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We observed from the above tables that the mean estimated values based on 

Method of moments with full data and the Local frequency ratio method based 

on partial information is nearly equal to the true value of the parameter. 

However, the standard errors of Local Frequency Ratio method are slightly more 

than that of the estimator based on full information sample. But in the particular 

case where out liars may affect the estimation procedure based on global 

information, this aspect is insignificant. Thus, when full information is available, 

the local information-based estimators are effectively as good as the 

corresponding Method of moments with full information. With sample sizes 50 

and 100 itself the accuracy is being tallied, and if we consider a larger sample 

size say 10000 the results may be more accurate. This new approach of 

estimation can be applied in any simulation, medical, Big-data analytics 

approaches and any data science problems for a small or bigger sample sizes 

resulting an optimum time with accurate estimation.  
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