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   ABSTRACT  

Regression analysis is a statistical technique to model data. But the 

presence of outliers and influential points affects data modelling and its 

interpretation. Robust regression analysis is an alternative choice to this. 

Here we make an attempt to study six different robust estimators and 

their performance on multiple linear regression data. Using Monte Carlo 

simulation, data is generated and modelled. R software is used for 

simulation and study. If the fundamental assumptions are true, robust 

approaches operate as effectively as the OLS estimator. When outliers 

and leverage points are present, OLS estimators completely fail to work 

efficiently. Thus, robust estimators are better than OLS estimator. 

Among the robust estimators, the MM estimator is the best method to 

rely on and outperform in all situations. 

1. Introduction 

One of the most essential statistical methods in data modeling is regression 

analysis. It aids in the prediction of a relationship between the response variable 

and the predictors. It is often applied in all fields of study including, social 

science, health science, engineering, physical science, and more. Regression 

Analysis mainly relies on the ordinary least squares method, which is very 

vulnerable in the presence of outliers. Informally outlier can be defined as those 

observations which lie out of place with respect to other observations in the data 

set. Thus, Robust Regression developed as an upgraded and efficient version of 

least squares in the presence of contaminated points in the data set. There are 

numerous robust regression techniques; among them, some are resistant too.  The 
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most common robust regression method is Huber M estimator. MM estimator 

developed by Yohai (1987), GM-estimator, Siegal’s Repeated Median estimator, 

Least Median Square estimator, Least Trimmed Square estimator, S-estimator 

(Rousseeuw and Yohai 1984), Minimum volume ellipsoid estimator (Rousseeuw 

and Leroy 1987). Schumacker et al. (2002), c0mpared estimators such as OLSE, 

LTSE, and MME using coefficient of determination as the criterion in a study on 

robust regression. Muthukrishnan and Radha (2011) compared Huber M and 

redescending M estimator with the ordinary least squares estimator with the help 

of the coefficient of determination. All these studies made use of a simple linear 

regression model and concluded in their papers. In this paper, we discuss about 

some of the mainstream and efficient robust regression techniques for 

contaminated data in multiple linear regression models. The main inherent idea is 

to compare the techniques using simulated data sets, and determine which method 

is better in multiple regression with respect to different situations. Simulation is 

done and evaluated by using the Monte Carlo technique. Section 2 briefly 

describes about the Ordinary Least Squares method, the necessity of robust 

regression, and important robust regression estimators developed over the years. 

Section 3 of this paper describes the Monte Carlo simulation scenario. Section 4 

provides the comparison and summary of the results obtained in section 3, and 

Section 5 provides the conclusion of the study. 

2. Ordinary Least Squares 

Linear regression model is about estimating the parameter β ϵ R
p 
where: 

                              (2.1) 

where             
     comprise the data and   is the p- dimensional unknown 

vector and    are unknown errors. The best-known estimator of β is the least 

square estimators obtained by: 

    ∑         
  

        (2.2) 

The least square estimators are very popular because of Gauss Markov theorem 

and very easy to use. These classical least estimators are the best when their 

assumptions are met by the data. Ordinary least square estimators assume that 

residuals are normally distributed and that the independent variables have equal 

variances at all levels. The central limit theorem provides the foundation for the 

normality of the error distributions, according to Huber (1972), Hampel (2001). 

The assumption of normality is violated whenever there are outliers in the data, 
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resulting in unstable estimate prediction by OLS. Consequently, if there are 

outliers in the data, classical estimators are familiar for misbehaving. 

The data may contain outliers for a number of reasons, including incorrect data 

entry, incorrect scoring, and unusual sample data. In regression, outliers can be 

classified according to their location and effect. Observations would be unusual 

with respect to y values or x values. They are categorized as outliers, leverages 

and influential points based on how they affect the model. The impact of these 

observations depends on the location where they occur. Outliers in the response 

variable are observations having significant standardized residuals. They lie far 

from the best-fit line in the y direction. Outliers are often defined as points having 

standardized residuals that are more than three standard deviations from the 

mean.  

Outliers can also occur in the predictor variables. They might affect the 

regression results. Extreme values in the predicted variables are called as 

leverages. Leverages measure how far an independent variable deviates from its 

mean (Rousseeuw, 1984). The direction of the distance between the remaining 

data points is not taken into account by leverages. Leverages do not affect the 

estimates of the regression coefficients. It affects the model summary statistics, 

standard errors of regression coefficient etc.  

Influential points are those data points that unduly influence the regression 

analysis or a point whose exclusion cause major changes in the fitting of a 

regression equation. Influential points are those points with unusual x coordinate 

and the unusual y value. The regression coefficients are noticeably affected by 

influential points. Influential points pull the regression model in its direction. A 

regression model has to be representative of all the sample observations. It is 

always necessary to assess these points impact on the model. If these points are 

bad values, then they should be avoided from the sample.  

Outliers in either the x or y directions constitute a significant hazard to least 

square estimators. Statistical or graphical methods can be used to identify 

outliers. Mahalanobis distance is a statistical procedure used to locate the outliers 

in the x direction.  We cannot say Mahalanobis distance as a perfect method, as it 

fails to detect the outliers in y direction. Other statistical outlier diagnostics works 

on the idea of erasing one observation at a time and recalculates the regression 

coefficients; they are called as regression diagnostics, in which diagnostics 

quantities are obtained using the data with aim of identifying influential points. 

Following the identification, they are either eliminated or corrected, and then the 

least squares analysis is performed. As a result, such statistics estimate the 

change in regression coefficients that would occur if a single observation were 
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removed following analysis. These statistics are sometimes known as deletion 

statistics, useful for pinpointing influential points. Cook distance, Studentised 

residuals, DFFITS, DFBETAS and Jacknife residuals are some of such deletion 

statistics. Calculation of these diagnostic statistics become complicated when 

there are multiple unusual observations.  

Robust regression estimation is alternative strategy for handling outliers.  Robust 

methods aim to create estimators that are immune to outliers. Diagnostic tools 

remove outliers before fitting the data using the least square approach, which is 

the main difference between them and robust regression estimates. Robust 

regression, on the other hand, fits a regression model to the great majority of the 

data before identifying outliers as regions with substantial residuals from that 

reliable response. 

The breakdown point, concept of bounded influence and relative efficiency are 

ideas that are pertinent to the study of robust regression. 

The presence of single outlier can completely invalidate the OLS estimator. 

Contrast with; we will see estimators that can handle certain percentage of 

outliers. This particular concept is called as breakdown point. Hodges 

(1967) provided the first explanation of a breakdown point, and it'd only evaluate 

location in a single dimension. Hampel (1971) provided broad description of it, 

but it was highly mathematical in nature and asymptotic. Donoho and Huber 

(1983) suggested a limited sample version of breakdown point. For a sample Z of 

n observations, 

  {(                )        (               )}    (2.3) 

Let T represents a regression estimator. When T is applied to such a sample, the 

result is a regression coefficient vector as       ̂. Let   of the data sample data 

points swapped by arbitrary values and call corrupted sample as    . The maximal 

bias generated by such contamination is then calculated as: 

                 ‖          ‖,    (2.4) 

where the supremum is over all possible   . If the bias is infinite, j outliers have a 

significant impact on the estimator. Thus, breakdown of the estimator   at the 

sample   is defined as  

  
           

 

 
                             (2.5) 
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Or the least amount of contamination that an estimator can tolerate is known as 

the breakdown point. The breakdown point of ordinary least estimator is 

  
       

 

 
. That is, even the presence of single outlier in the data set can affect 

least square estimators.  

When OLS has normally distributed error, the degree to which a robust 

regression estimator performs like least squares is the measure of the estimator's 

relative efficiency. Efficiency is commonly stated as a percentage, with a range 

of 0 to 1. When the mean square error of robust method is less, it can even reach 

one. The relative efficiency is calculated as the ratio of the robust method MSE 

to the OLS mean square error. 

The concept of a bounded impact function refers to the regression estimator's 

capacity to limit a particular residuals weighting, hence minimizing the impact of 

the data points on the regression estimator. Leverages have a significant impact 

on regression coefficient estimates. As a result, having an estimator with a 

bounded influence function is always preferable. (Birkes and Dodge, 1993).  

In order to deal with the barriers due to least square estimators, robust regression 

estimators were developed over different periods. Robust regression analysis has 

been investigated since the eighteenth century, according to Maronna et al. 

(2006). Numerous studies have been conducted, and numerous notable 

publications have been produced by Huber, Staudte and Sheather (2011), 

Rousseeuw and Leroy (1987) and Hampel, Ronchetti, Rousseeuw and Stahel 

(1986).  

Least Absolute Value Regression 

Least square is simple to compute, but this estimator is criticized for its lack of 

robustness. Even the presence of one outlier largely affects the least square 

estimate. In 1757, Boscovich introduced the method of least absolute deviation. 

Adrien Marie Legendre in France discovered the method of least squares around 

1805 (Birkes and Dodge, 1993). Edgeworth in 1887 improved Boscovich idea 

and develops the Least Absolute Deviation as it is now. Least Absolute Value 

regression which is also called as L1 estimator. Least absolute value regression is 

a type of L-estimators, the sum of the absolute values of the residuals is 

minimized to find this value.  

   ∑         ∑     ∑      
 
   

 
   .  (2.6) 
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The proposed idea is straight forward, but it is not as easy as least squares to 

calculate. Thus, it was not much recognized in history for a long time. Charnes, 

Cooper and Ferguson (1955) simplified the LAD method to a linear 

programming problem and advent of computer technology reduced 

computational difficulty in it. Portnoy and Koenker (1997) have provided a 

comprehensive summary on Least Absolute Deviation. Large sample properties 

of the LAD estimates are obtained in Bassett and Koenker (1978) and Pollard 

(1991). Suppose in the model (2.1) the error terms are independently and 

identically distributed with a common distribution function F, and satisfy the 

following two conditions: 

i) There exist a      such that            where        f is continuous at 

0,        and          

ii)   is non singular for some n, and 

                
   

      .  (2.7) 

Then the above conditions guarantee the asymptotic normality of least squares 

estimate of the parameter. The LAD estimation technique has grown in 

popularity as a result of these theoretical and computational advances. LAV is 

very resistant to the presence of outliers. LAV is less affected than OLS in the 

presence of unusual Y values, but it is unable to determine leverage values 

(Mosteller and Tukey 1977). Thus, its breakdown point is not better than 
 

 
. Also, 

they have a low efficiency. Combination of less efficiency and least breakdown 

point makes it less attractive than other estimators. 

M estimator 

The next step in this direction was the M estimator. Huber introduces the class of 

M estimators. They are straight forward extension of M estimators for location. 

M estimator    is defined as a solution of the minimization problem 

   ∑  (   ∑     )     ∑     
  

   
 
    (2.8) 

Or is a root of  

∑    
      ∑            (2.9) 

Where the function ρ is a properly chosen arbitrary function and it gives 

contribution of each residual to the objective function.           is called as 

influence function. The following are the characteristics of a reasonable ρ:  

i) ρ is continuous 

ii) ρ(e)≥0, ρ must be strictly positive and integrable 

iii) ρ (0) = 0 

iv) ρ is symmetric, ρ(e)=ρ(-e) and  

v) ρ is monotonically increasing function,             for              
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Thus, to define M estimator it is necessary to specify the function ρ or ψ. Solving 

the above set of non-linear equations yields the M estimate. However, the 

problem is that the solutions produced are not scale equivariant. Standardizing 

residuals by means of estimate of σ helps to overcome this, so that system 

becomes,  

∑    
       ∑        ̂      . (2.10) 

 

As in the case of M estimates of location, the median absolute deviation of σ is 

often used as the estimate. i.e.,  

 ̂  
                     

      
. (2.11) 

The choice of a good    function is based on the choice of how much weight to 

assign outliers. Large outliers are not as heavily weighted by a monotone   

function as they are by least squares. Even when the outlying distance rises, a 

redescending   function increases the weight of an assigned outlier up to a 

certain distance and then drops the weight to zero. An iterative method is 

necessary to find M estimates because residual cannot be found without the 

model is fitted. Two methods to solve M estimates nonlinear normal equations 

are Newton Raphson and Iteratively Reweighted Least Squares. Susanti and 

Pratiwi (2014) has discussed about the algorithm steps of M estimator. 

The steps involved are: 

i) For I=0, OLS method is employed to obtain the initial estimates of regression 

coefficients,  ̂   . 

ii) Based on the obtained initial estimates residuals,   
   

 are calculated and is 

used to calculate initial weight estimates. 

iii) To obtain initial weights a weight function is chosen and applied to the initial 

OLS estimate of residuals,     
   

   

iv) For I=1 use weighted least squares to obtain  ̂   . i.e., 

 

 ̂    (    )
  

    . (2.12) 

 

v) The process is continued by calculating new weights using the residuals 

obtained from the initial weighted least squares. These new weights are used 

in the next iteration step to obtain the estimate  ̂     

vi) Step 4 and 5 are repeated until the estimate  ̂ converges. 

It is easy to study the asymptotic properties of M estimators when        is 

monotone in β. Huber provided complete proof on asymptotic distribution of M 

estimators. i.e., M estimators have asymptotic variance and are normally 
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distributed asymptotically. (Hampel et al., 1986, p. 103), (Shevlyakov et al., 

2008): 

             
∫            
 

  

 ∫            
 

  
  

, (2.13) 

 

where f is the density of true error. Also, M estimators are asymptotically 

consistent. Hampel (1968) introduced the breakdown point (BP) concept and is 

another measure of robustness. The BP of an estimator is the proportion of 

spurious values in the data that the estimator can tolerate and still works properly. 

The more breakdown, more robust the estimator is. The BP of M estimator does 

not depend on its probability density. M estimators are highly resistant against Y 

outliers with breakdown point of 0.5 as they are robust against non-constant error 

variance and heavy tailed error distribution. M estimator is the simplest method 

and is not robust against the leverage points. The method is extensively used in 

analyzing data. M estimates are more efficient than OLS estimates. The major 

drawback of these iterative methods is we can never be sure a root exists, until 

we find it.  

Bickel (1975) suggest an alternative to M estimator referred to as one step M 

estimators. In this method, to estimate the parameter with the presence of 

nuisance parameter, first choose initial parameter for both estimates. Then 

nuisance parameter would be considered fixed and equal to its initial estimate. 

Suppose we have an initial estimator  ̂  of β in (2.1). Let 
 

      ̂   (2.14) 
 

denote the residuals from  ̂ . Let  ̂ be the standard deviation of  . Then a one 

step M estimator of β is written in the form: 
 

 ̂   ̂   ̂ 
  

 ̂ , (2.15) 
 

where  ̂  ∑             ̂ 
 
    for some odd function  ,          and 

         for weight functions    , and an appropriate matrix  ̂ . One step 

Huber M estimator has        . One step Mallow’s estimator has     . 

One step Andrew’s estimator has     , one step Hill and Ryan estimator has 

     .The common choices for the matrix  ̂  are the Newton Raphson form or 

iteratively reweighted least squares form. The major advantage of one step M 

estimator is easy to compute and they have asymptotic properties. 

Redescending M estimators are famous   type M estimators, in which    

functions are non-decreasing at the origin, but decreases to zero in the region far 
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from the origin. According to Holland and Welsch (1977), redescending 

estimators can be characterized as soft-redescending (pseudo-convex) and hard-

redescending (quasi-convex), depending whether the corresponding influence 

functions are nearly null and exactly null for polluted values of high magnitude. 

Hard redescending estimators influence function, i.e.,   function is usually built 

with discontinuous segments, such as Hampel’s three-part estimator (1968).M 

estimators can classify based on the mathematical features of the influence 

function as: Non robust, quasi robust, robust monotonous, robust soft 

redescending estimators and robust hard redescending estimators. D.Q.F. de 

Menezes et al., (2021) has reviewed 48 different types of M estimators in his 

paper.  

GM estimators 

Traditional M estimators are not “qualitatively robust” (Hampel 1971 and 1974). 

This is because they exhibit a large asymptotic bias when the joint distribution of 

        follows the model (2.1) only approximately. This is as a result of the fact 

that they have unbounded influence function. Also, M estimators are vulnerable 

to the leverage points. To overcome this generalized M estimator were 

introduced. The influence of extreme xi values were bounded by weight 

functions. It was Mallows (1975) proposed ∑            ̂
 
        . In this 

method outliers are handled using the usual M estimator and leverage points are 

down weighted by using appropriate weight function. 

The general class of GM estimators is   

∑        ,
  

      ̂ 
-   

 
   =0, (2.16) 

where   the score function generally used is Huber or biweight function. This 

type of GM estimator is called as Schweppe type. The model matrix X 

determines the weights wi and vi initially. The initial estimate is OLS and the 

scale estimate is found by scaling the median of the absolute value of the OLS 

residuals. Final estimates are obtained by iterative procedure. Mallow’s proposed 

another GM estimator. Mallow’s method down weight both tiny and large 

residuals which is the main difference between the two estimators. Schweppe’s 

down weight minor residuals only. The current generation of GM estimators has 

a breakdown point of at most 1/p+1 where p is the dimension of xi. Various GM 

estimators developed over different periods, more frequently discussed are 

Krasker (1980), Krasker and Welsch (1982) and Marazzi (1993). 

After the development of robust M estimators and their generalized version, a 

question raised whether high breakdown point estimators could develop, as an 

answer to the question, repeated median estimator proposed by Siegal, with a 
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50% breakdown point. Repeated median estimator is a variation of Theil Sen 

estimator. Theil (1950) advocated using the median of pairwise slopes as a slope 

estimator. Sen (1968) improved this estimator by adding the ability to handle ties. 

TSE is a robust estimator with a breakdown point of 29.3% and a bounded 

influence function. In addition, they have a high asymptotic efficiency. Theil Sen 

estimator is only formulated for simple linear model. Many authors like Oja and 

Niinima (1984), Zhou and Serfling (2008) have made their efforts to extend TSE 

to multiple regression model. However, it is technically difficult and causes the 

analysis of the properties to be delayed. Thus, Siegal in 1982 proposed highly 

efficient repeated median estimator and is defined as:  

For any p observations                                   the objective is to find 

the parameter that fits these points exactly. The j
th
 coordinate of parameter vector 

is represented by                 . Then the estimator is described as: 
 

 ̂                     
                              . (2.17) 

The estimator requires the consideration of complete subset of p observations and 

requires a lot of time to compute. It is easy to apply in problems with small p. For 

linear x-value transformations, the approach is not equivariant. When the 

contamination in the data is considerable, the repeated median estimator fails to 

distinguish between good and bad points of the data, despite having a breakdown 

point of 50%. Following the failure of repeated median estimators, Rousseeuw 

develop two high breakdown simple estimators Least Median Square estimator 

and Least Trimmed Square estimator. 

Least Median Square Estimator 

Rousseeuw (1984) develop Least Median of Squares, an L estimator which is 

calculated by replacing the objective squared residuals sum in OLS by median of 

the squared residuals. Rousseeuw’s this proposal was based on the proposal of 

Hampel (1975, p.380). The estimates are found by  

       (   ∑     )
 
        (  

 )  (2.18) 

where Med denotes the median. LMS always has a unique solution. Rousseeuw 

(1984) in his paper has stated that, if p>1, and the observation are in general 

position, then the breakdown point of LMS method is ([n/2]-p+2). The main 

concept of LMS is to reduce the dispersion of the residuals. It has a breakdown 

point of 0.5. Even though LMS has a high breakdown point, it has low efficiency 
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because of its slow convergence rate. Rousseeuw and Croux (1993) in their paper 

have shown that LMS has a relative efficiency of 37%. Rousseeuw (1984) in his 

paper itself proposed methods to overcome the slow convergence rate of LMS 

estimator by one step M estimators in which initial estimates are obtained by 

LMS method or by making use of an objective function other than that of LMS. 

Thus, least trimmed square estimators developed as an alternative to LMS 

estimator. 

Least Trimmed Square Estimator 

Least Trimmed Square is yet another L estimator method developed by 

Rousseeuw (1985). The method is extended from trimmed mean. The method 

minimizes the sum of the trimmed squared residuals. i.e., 

   ∑     
  

   ,     (2.19) 

             where   have to satisfy 
 

 
    . The constant q determines the breakdown 

point of the LTS estimator. LTS estimator definition implies that n-q 

observations with largest residual will not affect the estimator. The minimization 

of the objective function (2.19) implies, choose a subsample of size q 

observations and find β minimizing the sum of squared residuals of the 

subsample. Repeating this for every subsample, we get     candidates for LTS 

estimate and among them one that gives the smallest value of the objective 

function is the final estimate. LTS regression consists of finding β belongs to    

such that sum of q smallest squared residuals is minimum. As mentioned above 

the value of the constant q determines the breakdown point of the estimator, the 

choice depends mainly on the purpose for which we use LTS estimator.  The 

breakdown point of LTS reach the upper bound                 for 

regression equivariant estimators if the trimming constant             

     . Setting           ensures the estimator a breakdown of 0.5. It is 

always better to evaluate LTS estimator for a wide range of trimming constant 

values and compare how the estimator change with increasing value of the 

constant. Such an analysis provides us an insight on amount of contamination 

and structure of the data.   LTS regression is scale and affine equivariant. Visek 

(1999b) in his paper has shown the asymptotic normality and √  consistency of 

LTS estimator in a general linear regression model with continuously distributed 

disturbances. One of the drawbacks of LTS estimator is non-continuity of LTS 

objective function. Due to this LTS estimator sometime might possess highly 

sensitive to a change of one or several observations. LTS efficiency varies 

depending on the trimming constant value and the outliers in the data. Stromberg, 
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Hossjer, and Hawkins (2000) in their paper made clear that LTS has a low 

efficiency of 8%. Its low efficiency makes it non desirable estimator. Though the 

method has low efficiency, the method is used in other methods as initial 

estimates. For example, LTS is used as the initial estimate in GM estimator 

proposed by Coakley and Hettmansperger (1993). 

S Estimators 

Since LTS and LMS estimators has slow convergence rate, Rousseeuw and 

Yohai (1984) introduced high breakdown value method that minimizes the 

dispersion of the residuals with high asymptotic efficiency and better 

convergence rate of objective function than LTS. S estimate is the solution to the 

smallest possible dispersion of the residuals. S estimate is not simply minimizing 

the variance of the residuals; it minimizes the robust M estimate of residual scale. 

That is S estimator is obtained by minimization of the dispersion of the residuals: 

                                                   , 

With final scale estimate  

 ̂        ̂      ̂            ̂    (2.20) 

The dispersion       ̂      ̂            ̂   is obtained as an answer of  
 

 
∑   

   (
  

 
)  ,  (2.21) 

where b is a constant defined as             and   represents the standard 

normal distribution. The ρ function should satisfy the conditions: 

i) ρ is symmetric function and is continuously differentiable with ρ (0) =0. 

ii) for c > 0, ρ is strictly increasing on [0, c] and constant otherwise.  

S estimators are regression, scale and affine equivariant. For any ρ function 

satisfying the above conditions along with the condition 
 

    
     has a 

breakdown of 50%. The major drawback of S estimator is low efficient.  

MM Estimators 

MM estimator was proposed by Yohai (1987) which is most commonly and 

widely used regression estimator. The MM estimation technique involves first 

estimating the regression parameter with S estimation which minimize the scale 

of the residual from M estimation and then proceed with M estimation. MM 

estimation is a combination of high breakdown value estimator with high 

efficiency of approximately 95% relative to ordinary least squares. The name 

itself hints that more than one M estimation is used to calculate the final 

estimates. An MM estimates procedure is as follows: 
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i) Initially the regression coefficient estimate and residuals are obtained using a 

high resistant regression method of 50% breakdown point; S estimate is 

commonly used for this purpose. 

ii) Using residuals got from step 1, compute M estimate of the scale of the 

residuals. 

iii) In the first iteration of weighted least squares, the initial estimate of the 

residuals from step 1 and the residual scale estimate from step 2 are utilized to 

produce the M estimates of the regression coefficients.  ∑   (
  
   

 ̂ 
)       

    

iv) New weights,   
   

, are calculated based on the residuals obtained from 

initial weighted least squares in step 3. 

v) The above steps are reiterated until convergence. 

MM estimators are affine equivariant. They have a breakdown point of 0.5. MM 

estimators attain exact fit property from the initial estimate that is if the initial 

estimators used have an exact fit property, then MM estimator inherits the exact 

fit property. MM estimators are consistent and asymptotic normal too. 

Mathematical proof of all these properties is provided by Yohai (1987). MM 

estimators need a high breakdown start, for that below discussed estimators 

developed. 

 

Generalised S Estimators 

 

Generalised S estimators are proposed by Croux et al. (1994) to overcome the 

low efficiency of S estimators. The proposed estimator is calculated by finding a 

GM estimator of the scale of the residuals. Least quartile difference estimator is a 

special case of GS estimator which is defined as: 

 ̂        
 

       (2.22) 

where       is based on the residual            through the equation 

(
 
 
)
  

∑  (
     

     
)           (2.23) 

Croux et al. (1994:1271) in his paper stated that although the method has high 

efficiency, but it possesses “slightly increased worst case bias” which makes this 

method less acceptable. The fact that the objective function of GS estimators is 

independent of the intercept term is a key feature. For models with an 

asymmetric error distribution, GS estimators are ideal, since the objective 

function only depends on     through     , as a result, positive residuals are given 

the same weight as negative residuals of the same size. Yohai and Zamar (1988) 

proposed tau estimator obtained by minimizing estimate for the scale of the 

residuals.  
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The weight function used in this method is adaptive depending on the error 

distribution. The estimator has high breakdown and high efficiency, but it does 

not consider the leverage points, which question the efficiency of the estimator. 
 

3. Simulation 

The simulation study is carried out in three phases. Consider the following 

regression model.  

                                    (3.1) 

where    follows standard normal distribution. Let the generated explanatory 

variables be from multivariate normal with mean vector [5 5] and variance- 

covariance equal to *
  
  

+ using R software. The values of the regression 

coefficient are fixed as     0,     , and     .  Then    values are observed 

from the model defined in equation (3.1) with the specified values of  

    0,     , and     . The process is repeated for samples of different size 

of n=40, 60 and 100.Thus, we obtain data set of explanatory and observed 

variables. After generating the data, regression model is fitted in the data and the 

value of the parameters in the model are computed using various robust methods 

and classical OLS in R software and crosscheck the fitted parameter values 

obtained with the values specified above.  

In the second phase, outliers are introduced in the generated dependent variables 

in different percentages (ɛ=10% and 20%). That is, mentioned percentage of    

observations was replaced by values generated from a normal distribution with 

mean 100 and variance 25. This is repeated for samples of different size (n=40, 

60 and 100). After that, regression model is fitted in the data and the parameter 

values are computed using different robust methods and the classic OLS method 

also. In the third phase, 20% of generated    observations in phase one are 

replaced by the values generated from multivariate normal with mean [100 100] 

and variance *
    
  

+. And we have already outlier mixed    variables. Based on 

the data thus generated, a regression model is fitted, and the parameter values are 

computed using different robust methods and classical OLS. 
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4. Discussion on Simulation Results and Real Life Application 

After the simulation, the results are tabulated below (table 4.1 – 4.9). Estimators 

and results are obtained by using R software. We can see for 10% outlier in the 

data with sample size 40, the MM estimator and LTS estimator identifies the 

parameter value approximately. The parameter value computed by OLS is 

distorted from the original value. As the sample size increased to n=60, MM, S, 

and LTS methods worked properly and obtained the parameter values 

approximately near to the original value. Also, the relative efficiency of all the 

robust methods is greater than one. The coefficient of determination of MM and 

LTS estimator is 99%, whereas for the OLS method, the coefficient of 

determination is deteriorating from 57% to 2% as the sample size increases from 

40 to 60 due to the presence of outliers. From the tables, it is clear that the MM 

estimator performs outstandingly even when leverages are present in the data. 

However the percentage of leverage points in data increases, the MM estimator 

determines the coefficients approximately. When we try to find out the mean 

square error of the models with different percentages of leverages, as in tables 

4.6 to 4.9 it grows rapidly like, greater than 300. Comparing such mean square 

values cannot provide any practical information. Thus we don’t tabulate the 

relative efficiency. 

From the tables below having the results of a dataset having outliers and 

leverages in different proportion, we can say OLS, M, and LAD completely fail 

to work due to the presence of outliers and leverage points. Even though M and 

LAD are robust techniques, they fail to work in the presence of leverage points. 

Thus, M and LAD are not resistant to leverage points. The MM, S, and LTS 

estimators computed parameter values approximately equal to the assigned 

values for the samples of size 40 and 60. According to a study by Alma (2011), 

the S estimator performed better than the MM estimator in simple linear case 

because the MM estimator has problems with high leverages in small sample 

datasets. However, in this multiple linear study, MM estimators perform well 

against the effects of leverages for a small sample too. In this simulation study, 

all the methods fail to work for the sample size of 100, having both outliers and 

leverages in different proportions, which is the future work, to investigate the 

performance of the estimators in multiple regression models with large 

contaminated samples.  
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Table 4.1: With n=40,10% outlier. 

Method          RE 

OLS 13.9545 2.9566 5.5559 1.0000 

M 0.4897 2.9770 6.9521 1.1591 

S -0.2256 3.0243 7.019 1.1591 

MM 0.1629 2.9877 6.9729 1.1591 

LTS 0.201 2.988 6.9682 1.1591 

LMS -.2029 3.0246 7.0112 1.1591 

LAD 0.3875 2.9907 6.9721 1.1591 

Table 4.2: With n=60,10% outlier. 

Method          RE 

OLS 30.2761 1.8972 3.2752 1.0000 

M 15.3908 2.7224 4.9304 1.0696 

S 0.1398 2.9832 6.9660 1.3123 

MM 0.1198 3.0306 6.9576 1.3107 

LTS 0.1592 2.9899 6.9590 1.3114 

LMS -0.1973 3.0264 7.0054 1.3177 

LAD 1.1927 3.0226 6.7755 1.2866 

Table 4.3: With n=100,10% outlier. 

Method          RE 

 OLS 47.4302 0.9685 1.0968 1 

M 45.9079 1.0302 1.2779 1.000 

 S 9.5726 2.3333 6.1621 1.4329 

MM 44.523 1.0644 1.427 1.0022 

LTS 22.1867 1.2867 4.8457 1.2371 

LMS 9.3210 2.1759 7.071 1.6590 

 LAD 37.9894 1.0739 2.1223 1.0310 

Table 4.4: With n=40,20% outlier. 

Method          RE 

OLS 17.8577 1.7082 6.5452 1 

M 0.6700 2.8986 7.0425 1.2404 

S -0.2097 2.9989 7.0437 1.2676 

MM 0.0060 2.9810 7.0185 1.2656 

LTS 0.0462 2,9815 7.013 1.2649 

LMS -.1973 3.0264 7.0054 1.2725 

LAD 0.3376 2.9286 7.0395 1.2522 
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Table 4.5: With n=60,20% outlier. 

Method          RE 

OLS 17.8577 1.7082 6.5452 1 

M 0.6700 2.8986 7.0425 1.2404 

S -0.2097 2.9989 7.0437 1.2676 

MM 0.0060 2.9810 7.0185 1.2656 

LTS 0.0462 2.9815 7.013 1.2649 

LMS -0.1973 3.0264 7.0054 1.2725 

LAD 0.3376 2.9286 7.0395 1.2522 

Table 4.6: With n=100, 20% outlier. 

Method          

OLS 0.0065 3.0149 6.9866 

M -0.0241 3.0137 6.9880 

MM -0.0142 3.0133 6.9882 

S -0.1294 2.9917 7.0087 

LTS -0.0171 3.0110 6.9896 

LMS -0.0017 2.9698 7.0294 

LAD 0.0146 2.9945 7.0046 

Table 4.7: With n=40,10% outlier and 20 % leverage 

Method          

 OLS 50.0905 -0.6984 1.0493 

 M 48.9407 -0.6730 1.0685 

S -0.1607 2.9892 7.0366 

MM 0.05747 2.9786 7.0093 

LTS 0.0883 2.9794 7.0050 

LMS -0.4112 3.0378 7.0393 

LAD 52.0468 0.1116 0.3638 

Table 4.8: With n=60,10% outlier and 20% leverage. 

Method          

OLS 48.9147 -0.7815 1.0540 

M 48.7177 -0.7391 1.0578 

S 0.3039 2.9546 6.9742 

MM 0.3453 2.9927 6.9668 

LTS 0.3956 2.9499 6.9681 
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Heart Catherization Data (X Direction Outliers) 

Connors et al. (1996), Chambers et al. (1983) analyzed this data set in their 

respective study. At the femoral area, a catheter is inserted into a significant vein 

or artery and advanced toward the heart. The doctor must estimate the correct 

catheter length before inserting it. The purpose of the data set is to describe how 

the catheter length (Y) relates to the patient's height (X1) and weight (X2). 

Twelve observations on three variables are included in this data collection. The 

data is mainly used to explore the relationship between Y and two independent 

variables. A Strong correlation is established between the independent variables. 

Along with the association, four outliers in the X direction are detected in the 

dataset. Thus, we can use the data set to understand how different estimators 

perform in such situations. From table 4.10, we can understand OLS fails to 

perform in the presence of anomalies and give a poor estimate of the data. Only 

MM estimator performs fairly in this situation and detects the outlier point as 

(3
rd

, 8
th
, 9

th
, and 10

th
).  Even though other estimators like the M estimator, and S 

estimator estimate the parameters, they don’t have the precision in output as that 

of the MM estimator because they don’t detect the outliers in the X direction. 

  

LMS -0.2108 3.0302 6.9793 

LAD 48.9218 -1.0636 1.4896 

Table 4.9: With  n=100,10% outlier and 20 % leverage. 

Method          

OLS 52.6665 -0.6825 0.8871 

M 52.7578 -0.7128 0.9327 

S 53.4607 0.4349 0.0128 

MM 52.5612 -0.6619 0.9094 

LTS 52.8266 -0.5049 0.9267 

LMS 56.8409 0.9371 -0.5680 

LAD 53.3020 0.2748 0.1439 



Comparative Study on Robust Estimators… 

 

81 

 

 

 

 

 

 

 

5. Conclusion 

From our study, we can say that robust methods work with the same efficiency as 

that of the OLS estimator if the basic assumptions in the data are met. OLS 

estimators completely break down in the presence of outliers and leverage points. 

M, LAD, LTS and, S estimators perform consistently if there are only outliers. 

Whereas the MM estimator resists both outliers and leverages. Thus, the study 

concludes that robust estimators are better than OLS estimators. Among the 

robust estimators, our study concludes MM estimator is the best method to rely 

on and even LTS performs well in the presence of both the outlier and leverage 

in multiple linear regression models. Also, OLS is based on distributional 

assumptions, whereas robust methods do not have such constraints. Thus it is 

always better to use robust methods, especially the MM method, which helps to 

identify those observations which are outliers but behaving as normal or those 

observations which are swamped. Thus, the study recommends it is always better 

to use robust MM estimators, as they are resistant to the observations which are 

outliers or leverages. Many statisticians hesitate to use robust methods because of 

their unawareness and their belief that these methods are complex to calculate. 

Many statistical packages are available with the function of these robust methods. 

So, we recommend the use of robust methods. 

  

Table 4.10: Showing the result of Heart data. 

Method Coefficients MSE 

Intercept  Coefficient of X1 Coefficient of X2 

OLS 20.3758 0.2107 0.1911 14.2754 

MM 30.3033 -0.1372 0.3136 17.0764 

S 63.4433 -1.2279 0.6886 78.1368 

LTS 63.3528 -1.2265 0.6884 77.5385 

LMS 13.1598 0.5228 0.0415 15.8338 

M 26.3711 -0.0134 0.27577 15.1476 
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