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ABSTRACT  

Selling or buying a share in a stock market is now a matter of scientific 

decision-making mechanism. Investors are badly in need of the advice of 

mathematical model developers for understanding the pulse of the 

market. It leads to more attention from model builders to assess the 

market behavior. Hidden Markov models (HMMs) are inherent 

structures to spell out the linkage between invisible influencing factors 

on visible resulting states. Finance investment processes with two hidden 

and two visible states are formulated for obtaining the model and 

exploring the dynamics of gain/pain in the stock value. A generalized 

mechanism for a sequence of ‘n’ transactions with two visible states is 

modeled. Probability distributions for the single, of length two and three 

visible states are derived. Mathematical formulae for different statistical 

measures and various generating functions for the corresponding 

probability distributions are obtained in this paper. Understanding the 

model’s notion from a layman’s point of view, an empirical study was 

carried out with real-time historical stock market data of Reliance 

Industries limited. The pivotal objective of this study is to estimate the 

model parameters that measure the holistic changes in money values of 

different shares in a stock market. The finance and portfolio managers 

can make use of this study for designing optimal resource planning by 

understanding the relations of invisible factors to visible states. The 

development of user interface dynamic dashboards will make this work 

more popular and reachable to the community at large.  

1. Introduction 

A stock market is a market place where people can buy, sell and trade in publicly 

listed company’s stock. It offers a framework for frictionless securities trading. 

It is important to note that a person can only trade in the stock market through a 

registered stockbroker through an electronic means (Demat form). Shares are 
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purchased or sold with the intention of favorable rate of return from the 

investment the investors made in the stock market. A rising stock market is a 

solid indication of the country's economic growth. An increase in share price is 

linked to an increase in investments, whereas a reduction in share price 

decreases in investments in the stock market. A stock exchange is a place or 

organization where stock traders (including individuals and businesses) can trade 

equities either buy or sell. A significant corporation's stock is frequently traded 

on a number of different exchanges throughout the world and in India we have 

the two largest stock exchanges namely, the Bombay Stock Exchange (BSE) and 

the National Stock Exchange (NSE). In terms of market capitalization, the BSE 

and NSE are among the top five stock exchanges in the world for developing 

economies. The normal phenomenon in financial markets is that asset values are 

constantly changing and regardless of how well-informed an investor is having, 

the market probability can never be eliminated. 

The stock price is theoretically determined by its closing share prices that is by 

observing the supply and demand of shares; however, there are a variety of 

hidden factors that influence the stock price other than the supply and demand of 

the shares in the stock market, including, economic factors, performance of the 

company, changes in county’s currency value, military factors, change in covid 

cases, political stability of the country, investor faith on stock market, amount of 

imports and exports of the country etc. Predicting the value of a stock offers 

substantial arbitrage profit opportunities, which is a major driver of this study. 

We have used the HMM to analyse and forecast the stock market trend of 

Reliance Industries limited in this research. Since the variety of factors influence 

the stock value of Reliance industries Ltd. in which the fluctuation of the INR 

(Indian Rupee) against the USD (US Dollar) is assumed to be a hidden 

state/influencing factor which influence the stock price of Reliance Industries 

Limited. The two states of INR/USD such as INR decrease (D) and INR increase 

(I) are the two hidden states and the fall (F) and rise (R) in the closing share 

prices of Reliance Industries Ltd. are the two visible states in our two-by-two 

hidden Markov model. The main objective in this paper is to analysis and 

forecast the share price of Reliance industries which is influenced by the change 

in INR with respect US dollar. 
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1.1. Literature Review 

Hidden Markov model (HMM) is a statistical prediction model that estimates, 

analysis and predicts hidden states in terms observational/visible data. Every 

observation\visible state of an HMM has a specific probability distribution 

corresponding to a possible hidden state. Baum et al. (1966) first proposed 

HMM theory in the late 1960s, and Baum and Petrie created its mathematical 

foundations. Again, Baum et al. (1970) developed a maximizing approach where 

a single observation is used to calibrate the HMM parameters. Levinson et al. 

(1983) proposed an MLE approach for HMM that incorporated repeated 

observation training under the premise that all of the observations are 

independent and Li, et al. (2000) proposed an HMM training for different 

mutually dependent observations. 

In order to analysis and forecast the stock market price for any profitable 

company, investors, and the shareholders in making a safe and 

confident decision to make a successful stock trading in the stock market Adam 

(2009), has made it an attractive and popular research area. Given the difficulty 

of making a meaningful prediction based on publicly available historical data, 

we must be asked: how can historical data be used to make a meaningful 

prediction about future stock market behaviour? Initially, technical and 

fundamental analysis presented a solution by Butler and Malaikah (1992) on the 

basis of assumption that previous data is sufficient to anticipate future behavior. 

Choi (1999) presented the degrees of association between share prices and 

all available data are measured in real-time according to the Efficient 

Market Hypothesis (EMH).  The applications of a stochastic process to 

investigate stock market trend behaviour is not new. Using the stochastic 

model, several research articles have been published to anticipate and 

analyze share market moment at various times. Recently, GF Dar et al. 

(2022) applied Markov chain model (MCM) in order to analyze and predict the 

stock market movement of Tata Consultancy Services Ltd (TCS Ltd). They 

observed that the probabilities for the state of high loss in share prices of TCS 

are less than that the state of high gain in the long run recommended that 

investing in TCS share is a good choice of investment for investors to make 

capital gain. Huang (2015) introduced an absorbing Markov chain to create 

a Markov chain model to study the stock price volatility of Taiwanese 

corporation HTC. T R Padi, et al. (2022) used MCM for the stock market 

trend analysis and prediction in the context of Indian stock market. Real-

time data of the daily closing share price was obtained from the historical 

price of NSE (National Stock Exchange) for Nifty banks to conduct a 
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detailed and exploratory data analysis. Again, T R Padi, et al. (2022) 

provides a discrete-time MCM to analyze the behaviour of stock market 

prices with reference to State Bank of India (SBI) which is one of the 

leading commercial banks in India. The analysis is carried out on the 

basis of past three years daily historical real time data of closing share 

prices. Doubleday and Esunge (2011) applied discrete time Markov chain, 

to identify the diversified portfolio of shares and stock markets as a whole 

on the Dow Jones Industrial Average (DJIA). 

Markov chain model is used only when the states under study are 

directly visible to us. However, it sometimes happens that the stock 

prices are influenced by many hidden influencing factors such as 

country’s currency value, political factors, socio economic factors, 

military factors, imports and exports of the nation, political factors etc. 

In an HMM, these influencing factors are called as hidden states and the 

predictions about the visible states are made on the basis of these hidden 

factors.  Hassan and Baikunth Nath (2005) employed HMM to anticipate 

stock price for an interconnected market. Nguyen (2018) used the AIC, 

BIC, and HQ information criteria to find the ideal number of states for 

the HMM, as well as discuss the applicability of HMM in stock trading. 

Kritzman et al. (2012) employed a two-state HMM to forecast market 

volatility, inflation, and the company's production index. Guidolin and 

Timmermann (2007) applied HMM with four hidden states and multiple 

visible states to investigate asset allocation decisions on the basis of 

regime change in asset returns. Ang and Bekaert (2002) used the regime 

shift model for the allocation of international asset. Again, Nguyen and 

Nguyen (2015) used HMM for single visible data to forecast the regimes of 

some economic indicators and to select equities based on their performance 

during the projected schemes. Gupta et al. (2012) applied HMM in order to 

predicting stock closing prices utilizing multiple observation data such as open, 

close, low and high. HMM was utilized by Poonam Somani et al. (2014) to 

find out the patterns from previous data sets that matched the current day's 

stock price behavior. Tuyen (2013) used a normally distributed HMM to get 

the optimal MCM for the real time data by applying it to historical VN-Index 

data. Holzmann et al. (2016) studied the number of states in the HMM and 

determined the state with the most fluctuation corresponding the recent 

financial crisis. Again, Liu et al. (2017) employed an HMM in order to 

determine the time changing distribution of the returns in Chinese stock market 
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since 2005. Later, Fu et al. (2018) used an HMM to conduct a quantitative 

timing research on the CSI 300 Index, and they were successful in recognizing 

market status and generating positive results. In the same year, Chen and Xia 

(2018) proposed a piecewise continuous HMM temporal probability strategy to 

address the market's commodity classification problem. HMM was utilized by 

Eun-Chong Kim et al. (2019) to detect the stages of specific assets and to 

suggest an investing strategy based on price movements. Recently, EO 

Amiens, IO Osamwonyi (2022) used HMM with single observation to estimate 

the closing share price of the selected manufacturing companies from the 

Nigerian Stock Exchange (NSE). They used the real time data from 22 Nov, 

2013 to 6 July 2018 and the data were partitioned into two datasets for training 

and testing purpose. From the results obtained, they suggested that HMM 

should be adopted in practice for the stock price analysis and forecasting. 

Again, GF Dar et al. (2022) developed an HMM for a proper understanding of 

finance variables in the stock market. Stochastic modelling with HMMs is 

carried out for exploring various parameters of the model. It is observed from 

the empirical real time historical closing share price data analysis that there is 

the maximum likelihood of rising the share prices of HDFC bank in 

consecutive two days and the system will be on the rising state from the 19
th
 

day onwards. Qingqing Chang and Jincheng Hu (2022) made the use of an 

assumption that the hidden state of the HMM is a first-order Markov process 

and proposes a one-step method to predict the next hidden state of a financial 

time series when the sequence has two types of hidden states. From result of 

the hidden state, they also proposed to choose different models to predict its 

value according to the different amount of financial time series sample data. 

From the existing literature, it is observed that the probability of the next day 

share prices and then steady state probabilities using MCM and an HMM are 

obtained. However, in this paper, the mathematical expressions for the 

probability distributions for both the visible states V1 and V2 (which represents 

the falling and rise in the share price of Reliance Industries Ltd.) with one day, 

two-day and three days sequence are derived. The formulae for the statistical 

measures like mean, variance, coefficient of variation, skewness and kurtosis 

along with the generating functions such as moment generating function, 

probability generating function and the characteristics function of 

corresponding proposed probability distribution are also derived which is not 

observed in the existing literature. In order to forecast the future behaviour of 

both the hidden and the visible states, the steady state or the stationary 

probability distributions are calculated from the real time historical closing 

share price data of Reliance industries Limited. 
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1.2. Discrete-time Markov chains and HMMs 

A Markov chain model (MCM) is a random or stochastic model that displays a 

succession of possible events, with the probability of each event exclusively 

determined by the state obtained in the instantaneous previous event. The 

Markov chain means that given
tX (the current state) the state 

1tX 
(future state) 

depends only upon
tX but not on the previous

1 2 3 1 0, , ,... ,t t tX X X X X  
. 

Because of its Markovian features, powerless interest in accurate information, 

and predicting behavior with many preferences, the Markov model is important 

in statistics. Mathematically, the Markov property or the memoryless property 

represents that if , 0,1,2,... 1nX n t  is a stochastic process with discrete state 

space S, then the Markov property can be formulated in equation (1.2.1).  

1 1 1 1 1 1 0 0 1 1( | , ,..., , ) ( | )t t t t t t t t t tP X x X x X x X x X x P X x X x                    (1.2.1) 

For all, t  0,  1,2,  3,   and for all states 
0 1 1, ,..., ,t tx x x x 

. The state-space of 

the process is a countable set S containing all of Xi's possible values. The 

condition of the any state of the system may change over time. The transition 

probability, represented as ija , is the likelihood that the process will move from 

state i in the n
th
 step to state j in the (n+1)

th
 step. Hence   

1 1( | )ij n n n na P X x X x     for all  ,i j S and 0n  , 1 ,i j n  . 

An HMM is a statistical Markov model where the system under consideration is 

assumed to be a Markov process, which we call it say X, with hidden, or 

invisible states. It is assumed that there is another process, we call it Y, whose 

movement is influenced by the hidden process X. Suppose
nX  and 

nY  be two 

discrete-time stochastic processes such that n 1 , then the pair  ,n nX Y is an 

HMM if
nX  follows Markov property (1.2.1) whose trend behaviour is not 

directly visible and the process 
nY  follows the  following equation (1.2.2). 

1 1 2 2( / , ,..., ) ( / )m m n n m m n nP Y y X x X x X x P Y y X x                 (1.2.2) 

or every 1n  . In our probabilistic model, HMM allows us to discuss and talk 

about both the visible and hidden events that we think of as causal factors. 

Therefore, HMM can be defined as a stochastic model in which the hidden states 

are supposed to follow a Markov property, and it outperforms the other models 

in terms of accuracy. The parameters of an HMM (λ) are denoted by A, B and π 

and are determined using the supplied or given input values. HMM is written as 

λ = (S, V, A, B, π) where S ={H1,H2, … ,HN}is a set or collection of N possible 

hidden/invisible states, the set V={V1,V2,…,VM} are M possible visible states, A 
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is a square matrix of dimension N that is called the transition probability matrix 

(TPM), B is also an N M  rectangular matrix of observation probabilities 

which is termed as observed probability matrix (OPM) and finally the N 

dimensional vector   contains the probability of hidden states which is known 

as the initial probability vector (IPV). These parameters A, B and π of HMM 

satisfy the following conditions presented in equation (1.2.3). 

 
1 1 1

1, , 1,2,3,..., and 1,2,3,...,
N M N

ij jk i

j k i

a b i j n k m
  

            (1.2.3) 

For all, , , 0ij jk ia b   . 

2. Description of the Hidden and Visible States 

Since stock price variations assumes Markov dependency and time-homogeneity 

as per the existing literature, therefore, we design a two by two HMM with two 

hidden and two visible states. The two hidden states (decreasing and increasing 

INR/USD) that influence the happening of two visible states (fall and rise in the 

share value of Reliance Industries Ltd). The difference between the next day 

INR value and the previous day INR value with respect to USD yields two 

hidden states. These hidden states are symbolically written as follows. 

H1: When  1 0t tx x   , then the process is in a decreasing state (D) and 

H2: When  1 0t tx x   , then the process is in an increasing state (I). 

Where, tx  is the current and 1tx  is the previous day INR value with respect 

USD. Since no two consecutive closing prices are from the real time historical in 

the given period are observed equal in, therefore there is no any observation in 

the difference
1t tx x   is equal to zero. 

Similarly, the two visible states are also obtained on the basis of the difference 

between the current and previous day’s closing share price of Reliance industries 

limited and hence we write these two visible states as fallows. 

V1: When  1 0t ty y   , then there is a fall in the share price of Reliance (F). 

V2: When  1 0t ty y   , then there is a rise in the share price of Reliance (R). 

Where,
ty  is the current and

1ty 
is the previous day’s closing share price of 

Reliance industries limited. From the historical real time closing share price 

data, we have observed that there is no any difference
1t ty y  equal to zero. In 

the empirical study, we will use the hidden states D and I and the visible states 

F and R presented in the table 1. 
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Table 1: Description of hidden and visible states. 

Invisible (Hidden) states Visible(observation) states 

H1=D: Decreasing Rupee value  V1=F: Fall of Reliance share price 

H2=I:  Increasing Rupee value  V2=R: Rise of Reliance share price 

 

2.1. Model parameters 

In this section, we describe briefly the parameters of our two by two HMM such 

as the transition probability matrix (TPM), observed probability matrix (OPM) 

and an initial probability vector (IPV). the model parameters (TPM, OPM, IPV) 

are presented in the following subsections 2.1.1, 2.1.2 and 2.1.3 respectively. 

2.1.1. Transition Probability Matrix (TPM) 

Since the closing price difference of INR/USD has been separated into two states 

(D and I), the TPM will also include these two states, resulting in a 2 by 2 TPM. 

The TPM is a matrix that represents the probabilities of reaching to some hidden 

state from another hidden state in one step. The elements of TPM are all positive, 

and the rows must add up to one. The TPM for our two by two HMM is 

denoted by matrix A whereas the elements of matrix A are , , 1,2ija i j  , the 

transition probabilities among hidden states from i
th
 to j

th
 and are defined as 

1( / ) 0ij n na P X j X i     such that 
2

1

1, 1,2ij

j

a i


  . Therefore, the our 

TPM is of the form;  

11 12

21 22 2 2

D I

a aD
A

a aI


 
  

 

 

 

2.1.2. Observed/Emission Probability Matrix (OPM) 

Observed probability matrix (OPM) consists of transition probabilities from the 

hidden to visible states. Observed probability matrix our two by two HMM is 

denoted by matrix B and the elements of OPM are denoted as 

0, , 1,2ijb i j   , (the probabilities from the i
th
 hidden state to the j

th
 visible 

state, i.e., the transition between the states) and are defined as 

( / ) 0, , 1,2ij m nb P y j x i i j      Such that 

2

1

1, 1,2ij

j

b i


  . Therefore, 

the two-by-two OPM for our study will be of the form; 
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11 12

21 22 2 2

F R

b bD
B

b bI


 
  

 

 

 

2.1.3.  Initial Probability Vector (IPV) 
Initial probability vector (IPV) the vector of initial probabilities of the 

hidden/invisible states of an HMM. IPV is denoted by   (the vector contains the 

probabilities of decrease and increase in the INR value with respect to the USD) and 

the elements of IPV are written as
0( ) , 1,2i P X i i     such that 

2

1

1i

i




 . 

Therefore, the IPV will be  1 2,   . 

2.2. Schematic diagram   

HMM has been applied to predict economic systems and share market values in 

the subject of financial mathematics. In this paper we propose a statistical 

prediction model for the time series data of share values of Reliance industries 

limited using HMM. The Decrease (H1) and Increase (H2) of the INR value with 

respect to US dollar are two hidden (Invisible) states which influence the visible 

states like Fall (V1) and Rise (V2) of the stock value of Reliance as defined in the 

previous section. This technique will enable financial specialists in determining 

the optimal moment to purchase and sell stocks by automating the process of 

adjusting stock price indexes based on technical analysis. The arrow marks 

depict the probability of from and to the state of the system. The schematic 

diagram for the present study with two hidden and two visible states is given in 

Fig. 1. 

Schematic diagram of two by two hmm 

 

Fig. 1:  
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From the above state transition diagram, , , , 1,2ij ija b i j   and , 1,2i i   are the 

elements of TPM, OPM, and IPV.  

3. Probability Distributions for Visible States 

In order to derive the probability distributions for all visible states , 1,2rV r   of 

our two by two HMM, we need to define the random variable

( ), 1,2 and 1,2,3,...r tX r t   which represents the occurrence of 

, 1,2rV r  in a single day, two days sequence, three days sequence and so on. 

Here r denotes the r
th
 visible state and t denotes the length of sequence. The 

probability distributions of , 1,2rV r   in a single day, two days sequence and 

three days sequences along with their respective descriptive statistical measures 

are derived in the following sections 3.1, 3.2 and 3.3 respectively.  

3.1.   Probability distributions of , 1,2rV r   in a single day 

In this section, we have obtained the formula for computing the probability of 

visible states ( , 1,2rV r  ). These probabilities are obtained by the effect and 

influence of invisible/hidden states ( , 1,2qH q  ). Hence , 1,2rV r   can happen 

either by the happening of H1 or H2. Therefore, the formulae for obtaining the 

probability of visible states , 1,2rV r   is obtained in equation (3.1.1). 

2 2

1 1

( ) ( ) 0, 1,2r r q i ir

i i

P V P V H b for r
 

      (3.1.1)      

Generally, for an M by N HMM, the probability of each and every M visible 

states are obtained using equation (3.1.2). 

1

( ) 0, 1,2,3,...,
N

r i ir

i

P V b r M


    , such that
1

( ) 1
M

r

r

P V


  (3.1.2)                                                     

I. Probability distributions  

Let 1( ), 1,2rX r   be a random variable that represents the frequency of 

, 1,2rV r   in one day sequence. Then the random variable
1( ) 0,1rX   and the 

probability mass function (PMF) of 1( )rX   is derived in the equation (3.1.3). 
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2

1

2

1

1

, 1

( ( ) ) (1 ), 0

0,

i ir r

i

r r i ir r

i

b x

P X x b x

otherwise



 











   







   (3.1.3)                                                             

Where for r=1, we will get the probability distribution of state F, and when r=2, 

we will get the probability distribution of state R. 

II. Statistical measures 

The formulae for the k
th
 movement about origin is derived in equation (3.1.4).  

2
'

1

1,2k i ir

i

b r 


   (3.1.4)                                     

Since the expression is independent of k, then all the moments about origin are 

equal and therefore, the formulae for the mean and variance of the above derived 

probability distributions are presented in equations (3.1.5) and (3.1.6) 

respectively.  
2

'

1

1

1,2i ir

i

b r 


   (3.1.5)                                                                                         

2 2

2

1 1

(1 ), 1,2i ir i ir

i i

b b r  
 

     (3.1.6)                                                           

Now in order to derive the expression for the coefficient of skewness and the 

coefficient of kurtosis, the third and the fourth central moment are required to 

obtain. The formulae for obtaining the third and fourth central moment are 

derived as in the equation (3.1.7) and (3.1.8) respectively.  
2 2 2

2

3

1 1 1

(1 3 2( ) )i ir i ir i ir

i i i

b b b   
  

      (3.1.7) 

2 2 2 2
2 3

4

1 1 1 1

(1 4 6( ) 3( ) )i ir i ir i ir i ir

i i i i

b b b b    
   

        (3.1.8)                                                   

Hence the coefficient of skewness and coefficient of kurtosis are presented in 

equation (3.1.9) and (3.1.10) respectively. 
2 2 2

1

1

1 1 1

(1 2 )( (1 ))i ir i ir i ir

i i i

b b b    

  

       (3.1.9) 

2 2 2 2
2 3 1

2

1 1 1 1

(1 4 6( ) 3( ) )(1 )i ir i ir i ir i ir

i i i i

b b b b     

   

         (3.1.10)                                                    
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Furthermore, values of 1 and 2 for the proposed probability distributions are 

given in equations (3.1.11) and (3.1.12) respectively. 
2 2 2

1/2 1/2

1

1 1 1

(1 2 ) ( (1 ))i ir i ir i ir

i i i

b b b    

  

      (3.1.11)                                               

2 2 2 2
2 3 1

2

1 1 1 1

(1 4 6( ) 3( ) )(1 ) 3i ir i ir i ir i ir

i i i i

b b b b     

   

          (3.1.12)                                                

III. Generating function  

The expressions of various generating functions such as moment generating 

function (MGF), probability generating function (PGF), and characteristic 

functions (C.F.) of the proposed probability distributions are derived in this 

section. The formulae for MGF, PGF and CF are given in the expressions 

(3.1.13), (3.1.14), and (3.1.15) respectively: 

a). Moment generating function 

2

1

( ) 1 (1 ) , 1,2t

x i ir

i

M t e b r


     (3.1.13)                                                                  

b). Probability generating function 
2

1

( ) , 1,2x i ir

i

P t b r


   (3.1.14) 

c). Characteristics function 
2

1

( ) 1 (1 ) , 1,2 and 1it

x i ir

i

t e b r i 


       (3.1.15)              

3.2. Probability distributions of , 1,2rV r   in the run of two visible states 

The probability of sequence of two visible states is obtained on the effect of all 

possible invisible/hidden states’ sequences. The probability of the sequence of 

two visible states can occur by the happening of four different possible 

combinations of hidden states. Mathematically, we write the probability of

 ,l mV V for all (l, m = 1,2) can happen jointly with the happening of (H1, H1), 

(H1, H2), (H2, H1) and (H2, H2). Therefore, the formulae for obtaining the 

probability of the sequence of two visible states is presented in equation (3.2.1). 

2 2

1 1

( , ) , , 1,2l m i il ij jm

i j

P V V b a b l m
 

   
    
   
   (3.2.1)                                                        

For a specific combination say (V1, V2) using the above expression, we can 

obtain the probability of (V1 V2) as in equation (3.2.2). 
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2 2

1 2 1 2

1 1

( , ) i i ij j

i j

P V V b a b
 

   
   
   
   (3.2.2)                                                                                    

In the same way, the expressions for obtaining the probability of (V1, V1), (V2, 

V1) and (V2, V2) can be obtained by substituting the values of l and m.  

I. Probability distributions  

Suppose 2( ), 1,2rX r   be a random variable which denotes the frequency of 

visible state , 1,2rV r  happens in the run of length two days, then 2( )rX  takes 

values 0, 1and 2. Mathematically, we say that a random variable 2( )rX   is said 

to fallow the derived probability distribution if it takes the integral 0,1,2 and its 

PMF is given in equation (3.2.3). 

 2 2(1 ) ( ) , 0,1,2
( ( ) )

2 1
0 ,

M
xxC b b xx jr jrP X x

r r j
otherwise




   
  




  (3.2.3)                                     

Where, 
1

N

i ij

i

a 


 and , , , , 1,2ij ij ia b i j r   have the usual meaning. This 

model deals with two hidden two visible states that N=M=2. For every state, 

there is a corresponding probability distribution. Putting the value of r=1, we 

will get the probability distribution of the visible state V1=F and when r=2 in 

equation 1, we will get the probability distribution of V2=R. 

II. Statistical measures  

The measures based on moments for the present study are obtained. The expressions 

for k
th
 raw moment is given in equation (3.2.4), formula for mean is derived in 

equation (3.2.5) and the expression for variance for the derived probability 

distributions is given in equation (3.2.6).  

   
2

' 1

1

2 1 2 1 , 1,2 1,2,3,...r

k jk jk

j

b b r and k 



     
       (3.2.4)                                                    

Therefore, the formulae for mean and variance of the proposed probability 

distributions are  

 
2

1

1

' 2 2jk

j

b  


    (3.2.5)                                                                                                

 2 2 1 2 2        (3.2.6)                                            

where,  
2

1

jk

j

b 


 ,  
2

2

1

jr

j

b 


 , 
2

1

i ij

i

a 


 and r=1, 2. 
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In order to find the shape and peekedness of the probability distributions, we 

need to obtained the third and fourth central moments. The formulae for 

obtaining the third and the fourth central moments are derived in equations 

(3.2.7) and (3.2.8) respectively. 

3 2 (4 )(2 1) 6(2 1)           (3.2.7)                                                                                         

         
2 2

4 2 4 1 3 2 6 1 12 2 24 2 7                 (3.2.8)                                               

Similarly, the Pearson’s coefficients of skewness and kurtosis are respectively 

derived in equations (3.2.9) and (3.2.10). 

        
2 3

1 2 4 2 1 6 2 1 2 1 2 2        


     
  

(3.2.9)                                                

           
22 22 4 1 3 2 6 1 12 2 24 2 7 2 1 2 2

2
          

 
             

   (3.2.10) 

Also, the values of 1 and 2 for the proposed probability distributions are given 

in equations (3.2.11) and (3.2.12) respectively. 

        
3

2
1 2 4 2 1 6 2 1 * 2 1 2 2        



        (3.2.11)                                             

           
22 2

2 2 4 1 3 2 6 1 12 2 24 2 7 2 1 2 2 3          
              

  (3.2.12) 

where,  
2

1

jr

j

b 


 ,  
2

2

1

jr

j

b 


 , 
2

1

i ij

i

a 


 and r=1, 2. 

III. Generating functions 

The generating functions of the proposed probability distributions such as the 

MGF, PGF and characteristic function are obtained in this section. These functions 

are obtained in order to find the moments and other descriptive statistical 

parameters. The formulae for the MGF, PGF and CF are given in the expressions 

(3.2.13), (3.2.14), and (3.2.15) respectively: 

a). Moment generating function 

   
2

2 2

1

( ) 1 1 2 , 1,2t t

x jr jr jr jr

j

M t b b e b e b r


       
   (3.2.13)                                                      

b). Probability generating function   

 
2

2 2 2

1

( ) (1 ) 2 (1 )x jr jr jr jr

j

P s b sb b s b 


     
   (3.2.14)                                                                     

c). Characteristic function 

   
2

22

1

( ) 1 1 2 it it

x jr jr jr jr

j

t b b e b e b 


     
    (3.2.15)     



Development of Hidden Markov Model … 

 

137 

Such that 1 and 1,2i r                                          

3.3. Probability distributions , 1,2,3rV r   in three days sequence 

In the present sections, we have developed the formulae for the probability of 

getting three days visible states which are influenced by the effect of eight 

different combinations of hidden states. For instance, by applying these 

formulae, we can find out three days fall, three days rise, probability of first two 

days fall and the third day rise and so on in the stock market. The formulae for 

three days visible states are presented in equation (3.3.1).   

2 2 2

1 1 1

( , , ) , , , 1,2,3l m n kj jn km i ik il

k j i

P V V V a b b a b l m n
  

    
      

    
    (3.3.1)                                                   

For a particular sequence (V1, V2, V3), we put l=1, m=2 and n=3 in equation 

(3.3.1) and we will get the 1 2 3( , , )P V V V that is the probability of first day V1, 

second day V2 and third day V3 in equation (3.3.2). 

2 2 2

1 2 3 3 2 1

1 1 1

( , , ) kj j k i ik i

k j i

P V V V a b b a b
  

    
     

    
     (3.3.2) 

I. Probability distributions  

Now in order to derive the probability distribution for visible state , 1,2,3rV r   

in the run of three consecutive trading days, suppose
3( ), 1,2,3rX r  be the 

random variable which denotes the occurrence of the r
th
 visible state , 1,2rV r   

in a sequence of length 3. Then, 3( ) 0,1,2,3rX   . Therefore, the random 

variable 3( ), 1,2rX r  is said to follow the proposed probability distribution if 

it takes the integral values of 0,1, 2, 3 and its probability mass function is 

presented in equation (3.3.3). 

                     

     

        

 3

2 2 2
1 1 1 , 0

1 1 1

2 2 2 2 2
1 1 2 1 . 1 , 1

1 1 1 1 1

( ( ) )
1 2 . .

b a b a b x
kr kj jr i ik ir r

K j i

a b a b b b b a b a b x
kj jr i ik ir kr ir kr kj jr i ik ir r

k j i j i

P X xr r
b a b a b a b a b b
kr kj jr i ik ir kj jr i ik ir



 


 

 
      
    

   
            
        

 
   

2 2 2 2 2
(1 ) , 2

1 1 1 1 1

2 2 2
, 3

1 1 1

0, otherwise

b x
kr ir r

k j i j i

a b b a b x
kj jr kr i ik ir r

k j i












  
       
       
                      



     (3.3.3)                
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II. Mean and Variance  

The expression for the k
th
 moment about origin is derived as in the following 

equation (3.3.4).  
' 2 3 , 1,2,3,...k k

k k         (3.3.4)                                                                           

Where the value of , , and    are respectively given in equations (3.3.5), 

(3.3.6), (3.3.7) and (3.3.8). 

     
2 2 2

1 1 1

1 1 1kr kj jr i ik ir

K j i

b a b a b 
  

 
    

 
     (3.3.5)                                                                  

        
2 2 2 2 2

1 1 1 1 1

1 1 2 1 . 1kj jr i ik ir kr ir kr kj jr i ik ir

k j i j i

a b a b b b b a b a b  
    

  
        

  
       (3.3.6)        

   
2 2 2 2 2

1 1 1 1 1

1 2 . . (1 )kr kj jr i ik ir kj jr i ik ir kr ir

k j i j i

b a b a b a b a b b b  
    

 
     

 
       (3.3.7) 

2 2 2

1 1 1

kj jr kr i ik ir

k j i

a b b a b 
  

    
     

    
     (3.3.8)       

Therefore, the formulae for mean and variance of the proposed probability 

distribution are presented in equation (3.3.9) and (3.3.10) respectively. 
'

1 2 3        (3.3.9)                                                                                                           

     2 1 4 4 1 3 3 3 3 2                   (3.310)                                           

III. Other Statistical parameters  

The value of 3 and 4 of the probability distributions are also derived in 

equation (3.3.11) and (3.3.12) respectively. 

     3 1 10 24 4 4 33 3 9 8 21                    (3.3.11)     

  4 16 81 2 3 (4 5 32 ) (32 44 168 ) (108 153 66 )                            

(3.3.12) 

Therefore, the shaping measures that is the value of 1 and 2 of the probability 

distributions are derived in equation (3.3.13) and (3.3.14) respectively. 

     

     

2

1 3

1 10 24 4 4 33 3 9 8 21

1 4 4 1 3 3 3 3 2

        


        

         
         

                           

(3.3.13) 
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  

     
2 2

16 81 2 3 (4 5 32 ) (32 44 168 ) (108 153 66 )

1 4 4 1 3 3 3 3 2

              


        

            


         

 

 (3.3.14) 

Furthermore, we have derived the formulae for obtaining the value of 1 and 2

for the proposed probability distributions. The value of 1 and 2  are presented 

in equations (3.3.15) and (3.3.16) respectively. 

           
3

2
1 1 10 24 4 4 33 3 9 8 21 1 4 4 1 3 3 3 3 2                  



                      
 

(3.3.15) 

  

     
2 2

16 81 2 3 (4 5 32 ) (32 44 168 ) (108 153 66 )
3

1 4 4 1 3 3 3 3 2

              


        

            
 

         
            (3.3.16) 

IV. Generating functions 

Finally, for the probability distributions of the random variable

3( ), 1,2,3rX r  the formulae for various generating functions such as 

moment generating function (MGF), probability generating function (PGF), and 

characteristic functions (C.F.) are derived in equations (3.3.17), (3.3.18) and 

(3.3.19) respectively: 

a). Moment generating function (MGF) 
2 3( ) t t t

xM t e e e        (3.3.17)                                                                                                     

b). Probability generating function (PGF) 

( ) 2 3xP t t t t      
 

(3.3.18)                                           

c). Characteristic function  
2 3( ) it it it

x t e e e       
 

(3.3.19) 

The key idea behind our new approach to HMM is to estimate the parameters of 

HMM (A, B and ) using the training dataset. we know the previous day closing 

share price for a given stock at the market, and our goal is to predict the next day's 

closing share price using this information. All the derived and generated expressions 

are then used in the real-time historical closing share price data set of Reliance 

Industries limited to analyze and predict its next day's closing share price and to 

forecast its long-term behavior. 

4. Statistical Data Analysis 

In this paper, we have retrieved two data sets from the source. The primary data 

set deals with invisible states and the second data set deals with visible states. 
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The daily data regarding the changing values in INR with respect to USD is 

considered hidden factor and the daily changes in the closing share prices of 

Reliance industries limited is visible data set. The basic aim in this paper is to 

forecast the share prices of Reliance using HMM. The daily data of INR with 

respect USD from Jan. 02, 2018 to Dec. 24, 2019 consisting of 486 observations 

is retrieved from the website of Reserve Bank of India 

(https://in.investing.com/currencies/usd-inr-historical-data). Similarly, the daily 

data of the closing share prices of Reliance are obtained from 

www.yahoofinance.com for the same time period. The necessary variable needed 

for computation like date and closing prices of INR and closing share prices of 

Reliance industries limited are extracted from the corresponding sources.  

4.1. Stock market trend of Reliance and INR value 

Fig. 2 depicts a side-by-side comparison of the movement of the Indian rupee value 

with respect to USD and the Reliance stock market trend from January 02, 2018, to 

December 24, 2019. 

Stock market movement of reliance vs change in inr/usd 

 
Fig. 1 

Since the correlation between the visible state (Reliance share prices) and the 

invisible state (change in INR) for the time period from February 2, 2018 to 

December 24, 2019 is 0.63, we can conclude that the hidden and visible states 

are positively correlated and that the two stocks move in the same direction. This 

diagram also shows that as the INR fluctuates, the share price of Reliance 

fluctuates as well. 

4.2. Change in INR and share prices of Reliance 

Fig. 3 depicts the daily movement in INR/USD against the volatility in 

Reliance's share prices. It is clear that the fluctuation in Indian rupee value has a 

substantial impact on the stock price of Reliance Industries. The increase and 

decrease in the INR correspond to the rise and fall in Reliance's stock market 

movement. 

https://in.investing.com/currencies/usd-inr-historical-data
http://www.yahoofinance.com/


Development of Hidden Markov Model … 

 

141 

Change in inr and closing price of reliance 

 
Fig. 3 

4.3.  Frequency diagrams of hidden and visible states 

As described in section 2, data on the change in INR and Reliance share prices 

are transformed into labels such as decrease (D) and increase (I) for hidden states 

and fall (F) and rise (R) for visible states. The frequency of states D and I, as well 

as visible states F and R, are shown in table 2. In the period from January 02, 

2018 to December 24, 2019, INR decreased 236 times and increased 249 times, 

as shown in table 2. In the same time span, the closing share prices of Reliance 

have fallen 238 times and risen 247 times. 

Table 2: Frequency table for invisible and visible states. 

 Invisible states Visible states 

States D I F R 

Frequency 236 249 238 247 

The above table shows that as the value of the INR decreases, the share price of 

Reliance falls in almost the same proportion, and as the INR increases with 

respect to USD, the share price rises in the same ratio. 

4.4. Frequency diagrams for the transition states 

The frequency diagram represents the relation of transition states in terms of 

transition frequencies of both visible and invisible/ influencing factors. Table 3 

and Fig. 4 shows a comparison between how INR value and the share prices of 
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Reliance are changing in terms of transition frequencies of hidden and visible 

states (D, I and F, R). 

Table 3: Transition frequencies of hidden and visible states. 

H
id

d
en

 S
ta

te
s  Hidden States Visible States 

 D I F R 

D 114 122 113 129 

I 122 126 126 117 

 

These frequencies are expressed in diagrammatic representation in Fig. 4 that 

represents a relation between how INR/USD and the share prices of Reliance are 

changing in terms of transition of hidden and visible states (D, I and F, R). 

 

TRANSITION FREQUENCIES OF INVISIBLE AND VISIBLE STATES 

 
Fig. 4 

The above diagram clearly shows that the decrease in the INR is directly 

proportional to the fall in the share values of Reliance Industries limited whereas 

when there is an increase in INR value, the share prices of Reliance rise. 

5. Results and Discussion 

In this section, we have estimated the parameters of HMM, the TPM, OPM and the 

IPV for the real time historical data of INR and Reliance Industries limited. The 

Transition probability matrix, observed probability matrix and an initial probability 

vector presented in section 4.1, 4.2 and 4.3 respectively. 

5.1. Transition probability matrix 

Microsoft Excel is used to calculate the TPM for the INR value (from the previous 

day's value to the current day's rupee value). The elements of the TPM represent the 

chance that the system's state will change to state j from state i in one step. The TPM 
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our two by two HMM is estimated from the real time historical closing price of 

INR/USD is presented in matrix A given below. 

0.483051 0.516949

0.491935 0.508065

D I

D
A

I

 
  

 

 

This matrix A reveals that the probability of the system will go to decreasing state 

on the next day given that a decreasing state was observed on the previous day is 

48.3%, and there are 51.7% that the INR will increase with respect to USD in the 

next day given that the INR is in decreasing today. Similarly, the second row of 

the matrix demonstrates that if the INR is in an increasing state, there is a 49% 

likelihood that it will move to decreasing state on the next day, whereas the INR 

will remain in the same state with a 51% chance. It can be observed from the 

above matrix A that when there is the increase in the INR in the previous day, 

there will be increase in the INR in the next day with maximum probability. 

5.2. Observed probability matrix 

The OPM of the HMM is also a matrix of probabilities of transitioning from 

hidden state to visible states. In other words, the likelihood of the system's state 

changing to the j
th
 visible state from the i

th
 hidden state is bij. The observed 

probability matrix for our two by two HMM is denoted by B and estimated from 

the real time historical hidden and visible data sets given below.  

0.466942 0.533058

0.518519 0.481481

F R

D
B

I

 
  

 

 

The first row in the above matrix B represents the probability that as the INR 

decreases today, the share prices of Reliance will fall with 46.69% chances and 

rise with 53.30 % chances on the next day. Similarly, the second row in matrix B 

depicts that as the INR increases today, the share price of Reliance will fall with 

51.9% likelihood and rise with probability 0.48 on the next day. We have 

observed from matrix B that when the INR decreases with respect to USD, the 

closing share price of Reliance industries will rise with maximum probability. 

5.3. Initial probability vector 

The IPV is the vector of initial probabilities of the hidden states. The two 

invisible states in this study are decrease and increase of INR with respect to 

USD. From the table 2, it is observed that 236 times there is a decrease in INR 

during the given time period and 249 times that the increase in INR with respect 

USD out of 485. Hence the corresponding probabilities of the states D and I are 
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48.7% and 51.3% respectively. Hence the IPV of our two by two HMM is 

presented in vector given below. 

 0.486598 0.513402

D I

 
 

These parameters of the model such as the TPM, OPM, and IPV are obtained 

from the real time data sets can best be explained through the diagram called the 

schematic diagram or the state transition diagram. The schematic diagram of our 

tow by two HMM with two hidden (H1=D, H2=I) and two visible (V1=F, V2=R) 

states is presented in Fig. 5. 

 

SCHEMATIC DIAGRAM OF TWO BY TWO HMM 

 
Fig. 5 

Microsoft Excel and R Software were used for the mathematical and statistical 

computations and graphical displays for this study. 

6. Probabilities distributions for visible states 

In this section, we have calculated the probability of visible states V1 and V2 for 

different time lengths (that is for one day, for two days and for three days sequence) 

for our two by two HMM by applying the formulae obtained in section 3.1, 3.2 and 

3.3. The probability distributions for the visible state particularly the falling state in 

this study along with their descriptive statistical measures are presented in next 

subsections 5.1, 5.2 and 5.3 respectively. 
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6.1. Probabilities distribution for falling state in a single day sequence  

On applying equations (3.1.1), the probabilities of the visible states such as V1 = 

Falling of share price of Reliance and V2 = Rising in the share price of Reliance 

industries respectively are obtained as under. 

Table 4: Probabilities of visible states. 

States Probability 

P(V1) = P(Falling) 0.493422 

P(V2) = P(Rising) 0.506578 

The highest probability is associated with rising in the share prices of Reliance. Now, 

let 1( )FX  be a random variable representing the falling states in one day sequence, 

then 1( )FX  takes values 0 or 1. Hence the probability distribution of 1( )FX  (falling 

the share prices of Reliance industries limited) is as fallows.   

Table 5: Probability distribution of falling state in single day sequence. 
 

( )X   0 1 Total  

{ ( )}P X   0.506578 0.493422 1 

I. Descriptive statistical measures 

Various statistical parameters such as the mean, variance, CV, skewness and 

kurtosis of the above probability distribution are obtained from the real time 

historical data sets using the above derived formulae. The statistical parameters of 

the probability distribution are presented in following table 6. 

Table 6: Descriptive statistical measures. 

Raw 

moments  

Central 

moments  

Coefficient of 

Skewness 

Coefficient of 

Kurtosis 

1 '

 0.493422 

  

 

2 '

 0.493422 

2

 0.249957 

3 '

 0.493422 

3

 0.249957 1  4.000692 2  -1.9214 

4 '

 0.493422 

4

 -0.12005 1  2.000173 2  -4.9214 

CV 101.3244 
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6.2. Probabilities distribution for falling state in two days sequence  

The formulae for obtaining the probability of sequence of visible states 

( , ) , 1,2V V     of length two are derived in section 3.2 in equation (3.2.1). 

Therefore, by applying equation (3.2.1), the probability of visible states of length 

two with the real time historical data are presented in table 7.  

Table 7: Probability of visible states in two days sequence. 

Sequences Probability Sequences Probability 

F, F 0.244078 R, F 0.249291 

F, R 0.249291 R, R 0.257339 

Here P (F, F) = 0.244078 is the probability that there will be consecutive two days 

fall and P (R, R) = 0.257339 is the probability of consecutive two days rise in the 

share prices of Reliance industries limited. In this section, we have obtained the 

probability distribution of the falling state in two days sequence. The probability 

distribution of falling state with the real time historical data set using equation 

(3.2.3) in section 3 is given in the following table. 

Table 8: Probability distribution of falling state in two days sequence. 

( )X   0 1 2 Total  

{ ( )}P X   0.257339 0.498583 0.244078 1 

 

The mean, variance and other statistical measures of the above probability 

distribution are presented in the next section. 

I. Statistical measures  

The mean and variance and other statistical measures of the above derived 

probability distribution of the random variable 2( )FX  denoting the falling state 

in the sequence of run two using HMM are estimated from the real time 

historical data are presented in the following table 9. Therefore, by using 

equations derived in section 3.3, the mean, variance, coefficient of variation, 

skewness and kurtosis are obtained in table 9.  
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Table 9: Descriptive Statistical measures. 

Raw moments 

Central 

moments 

Coefficient of 

Skewness 

Coefficient of 

Kurtosis 

1 '

 0.986739 

  

 

2 '

 1.474895 

2

 0.501241 

3 '

 2.451207 

3

 0.032505 

1

 0.00839 2  1.842925 

4 '

 4.403831 

4

 0.463021 

1

 0.091598 2  -1.15708 

CV 71.74986 

      
From the results it is observed that in successive occurrence of 2-day sequence, 

the fall of share value is observed around one day with variance 0.501241. 

6.3. Probabilities distribution for falling state in three days sequence  

The formulae for obtaining the probability of sequence of visible states 

( , , ) , , 1,2l m nV V V l m n  of length two are derived in section 3.3 in equation 

(3.3.1). Therefore, by applying equation (3.3.1), the probability of visible states of 

length two with the real time historical data are presented in table 10.  

Table 10: Probability of the sequence of three visible states 

Sequences Probability Sequences Probability 

F, F, F 0.25078 R, F, F 0.052436 

F, F, R 0.110231 R, R, F 0.052039 

F, R, F 0.102514 R, R, R 0.432 

Here P (F, F, F) = 0.25078 is the probability that there will be consecutive three 

days fall and P (R, R, R) = 0.43200 is the probability of consecutive three days 

rise in the share prices of Reliance industries limited. In this section, we have 

obtained the probability distribution of the falling state in three days sequence. 

The probability distribution of falling state with the real time historical data set 

using equation (3.3.3) in section 3.3 is given in the following table 11. 
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Table 11: Probability distribution of falling state in three days sequence. 

( )X   0 1 2 3 Total 

{ ( )}P X   0.432 0.154553 0.162667 0.25078 1 

The mean, variance and other statistical measures of the above probability 

distribution are presented in the next section. 

I. Statistical measures  

Various descriptive statistical measures of the above derived probability 

distribution of the random variable 2( )FX  denoting the falling state in the 

sequence of run three using HMM are estimated from the real time historical 

data are presented in the following table 12. Therefore, by using equations 

derived in section 3.3, the mean, variance, coefficient of variation, skewness and 

kurtosis are obtained in table 12.  

Table 12: Descriptive Statistical measures. 

Raw moments 

Central 

moments 

Coefficient of 

Skewness 

Coefficient of 

Kurtosis 

1 '

 1.232227 

      
2 '

 3.062241 

2

 1.543858 

    
3 '

 8.226949 

3

 0.648807 1  0.114396 2  1.469271 

4 '

 23.07041 

4

 3.502001 1  0.338224 2  -1.53073 

CV 100.8354 

       

From the results it is observed that in successive occurrence of 3-day sequence, 

the fall of share value is observed more than one day with variance 1.543. 

7.  Stationary Probability Distributions 

In order to know the future behaviour of INR/USD and the closing share prices 

of Reliance Industries limited, the stationary probability distributions for both 

the transition probability matrix and for the observed probability matrix are 

obtained in this section. A stationary probability distribution of a Markov chain 

is a probability distribution that remains unchanged in the process with the 

change of time.  The stationarity matrix is achieved by multiplying the same 

matrix number of times until we get the matrix with identical elements in each 

column. These stationarity conditions for the TPM and OPM are obtained from 

the real time historical data in the next subsections 6.1 and 6.2 respectively. 

 



Development of Hidden Markov Model … 

 

149 

7.1. Stationarity for transition probability matrix 

Forecasting of long run behavior of INR is very meaningful for investors 

investing in Reliance industries as its closing share prices is influenced by the 

change in INR with respect to USD. This long run behavior of INR is observed 

by determining the higher order TPM. The stationary matrix is obtained by 

multiplying the TPM (A) in using R software number of times until all the 

column entries are identical in the matrix. The TPM obtained in section 4.1 is  

0.483051 0.516949

0.491935 0.508065

D I

D
A

I

 
  

 

 

The INR/USD data set is an Ergodic Markov chain, which means it is 

irreducible, positive recurrent, aperiodic, and time homogeneous. The 

assumption helps in predicting the closing share prices' long-term behaviour. 

The stationary matrix is created by multiplying the TPM four times in R 

Software until all we observe the identical column elements. Here the stationary 

matrix for the INR is obtained in A
4
. 

4
 0.4876033  0.5123967

 0.4876033 0.5123967

D I

A
 

  
 

 

At n=4, the likelihood of the INR value remaining in the same state, regardless of 

its previous day's state. The higher-order TPM (A
4
) computed above 

demonstrates that the TPM tends to the state of equilibrium or steady-state after 

the 4
th
 trading day since 486 trading days. Following that, the TPM of INR 

remains stable for the next few trading days. This steady state of INR interprets 

as follows. There are 51.2% chances of increase in INR in near future 

irrespective of its initial states weather it is in D or I and the probability that there 

will be a decrease in INR is 48% on the fourth trading day and onwards 

irrespective of its initial states is weather D or I.  

7.2. Stationary distribution of OPM 

The matrix B obtained in section 4.2, like the matrix A, is an irreducible, positive 

recurrent, aperiodic matrix that is independent of where we begin. If we continue 

the chain for a long time, the distribution of Yn will converge to a constant, i.e., 

its stationary distribution. The OPM calculated in section 4.2 as follows. 

0.466942 0.533058

0.518519 0.481481

F R

D
B

I

 
  

 
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Following the same procedure as in 6.1, the stationary observed probability 

matrix is arrived at the 6
th
 step which is presented in matrix B

6
. 

6
 0.4930869 0.5069131

0.4930869 0.5069131

F R

D
B

I

 
  

 

 

The probability of stock prices for Reliance remained stationary at t=6, 

independent of which state it was on the previous day. The matrix (B
6
) 

computed above shows that after the 6
th
 trading days since 486 trading days, 

OPM tends to the steady state or the state of equilibrium. After then, the OPM 

remains same/unaltered for the following trading days. The above stationary 

distribution B
6
 of OPM for Reliance's share prices reveals the following 

information. There is 49.3% chance that closing share prices of Reliance will 

witness the state of fall (F) by 6
th
 day irrespective of the nature of previous day’s 

hidden state (D or I in the INR) and approximately 50.7% chance that the share 

prices of Reliance will end up be in rise (R) on 6
th
 day and onwards, irrespective 

of its state on the previous day, no matter whether there is the decrease or 

increase in INR/USD.   

8.  Conclusion 

The Hidden Markov model is a well-established and well-researched method for 

analyzing and predicting time series behavior from previous historical time 

series data sets. We suggest the use of an HMM, a novel technique, to forecast 

the future behaviour in a time series in this paper. This study is based on two 

parts; in the primary part, the mathematical formulae of the probability 

distributions of each visible states with single day, two days sequence and three 

days sequence are derived in section 3.1, 3.2 and 3.3 respectively in equations 

3.1.3, 3.2.3 and 3.3.3. In addition to this, for every derived probability 

distribution, the formulae for various descriptive statistical measures are derived 

in section 3.1, 3.2, 3.3. Furthermore, the expression for different generating 

functions such as the moment generating function, probability generating and 

the function are obtained in section 3.1part III, 3.2 part III and 3.3 part IV. 

Whereas the second part of the paper is based on verification and the empirical 

study of all the formulae derived through the real time historical data sets for the 

effectiveness and the verification of the model. The statistical analysis of an 

HMM are done using Microsoft excel and R Software. The study of chance 

processes for which information of each event is significant solely in 

forecasting the next outcome is obvious from the results produced. The 
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results in an IPV in section 4.3 represents that the likelihood of decreasing and 

increasing the INR with respect USD are 49% and 51% respectively. The TPM 

obtained in section 4.1 explains the probability that INR will decrease and 

increase in the next day given that today’s INR is on decreasing state are 48% 

and 52% respectively and the probability that INR will decrease and increase in 

the next day given that it is on increasing state are 49% and 51% respectively. In 

the same way OPM obtained in section 4.2 explains that the likelihood of falling 

and rising the share price of Reliance industries limited in the next day given 

that there is decrease in the INR are 47% and 53% respectively and the 

probability of falling and rising the share price of Reliance given that there is an 

increase in INR are 52% and 48% respectively. 

Probabilities of the visible states in a single day are presented in table 4 where we 

observe that probability of rising the share price of Reliance in more than its 

falling. The probability distribution for the falling state in one day length is 

presented in table 5 and the descriptive statistical measures such as mean, 

variance, skewness kurtosis and coefficient of variation are presented in table 6.  

Probabilities of the visible states in two days sequence are presented in table 7 

where we observe the likelihood of rising the share price of Reliance on second 

day given that the first day it was on rising state is maximum as compared to 

other sequences. The probability distribution along with its statistical parameters 

are shown in table 8 and 9 respectively. Similarly, the probabilities of three 

visible states are presented in table 10 in which we have observed that the 

probability of three consecutive days rise in the share price of Reliance industries 

limited is maximum with respect to other different sequences. 

Finally, the steady-state probability distribution of the OPM is obtained at
6B that 

is at t=6, the probability of stock prices for Reliance remained stationary, 

independent of which state it was on the previous day. The stationarity probability 

distribution reveals that the probability of fall in the share price of Reliance on 6
th
 

day and onwards is 49.3% and probability of rise in the share price of Reliance on 

6
th
 day and onwards is 50.7% irrespective of the nature of previous of day’s state 

weather the INR is on decreasing (D) or increasing (I) state. These results suggest 

that HMM can be effectively used to analysis and forecast time series historical 

time series data. The proposed model is useful for the investors to predict the 

variations of share values and will decide when to sell, when to hold and when to 

purchase a share of certain company say for example Reliance industries in this 

study. Since the probability distributions are derived for the visible states of 

length one, two and three, the future work can be done up to n days sequence. 

Researchers can make use of an HMM with N number of hidden states and M 

number of visible states. 
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