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ABSTRACT  

In describing the system behavior accurately through various mathematical 

models include parametric dynamic models, statistical probability 

distribution functions etc, parameter estimation plays a critical role. The 

Lomax distribution has played a very important role in different contexts. 

It was originally introduced for modeling business failure data but its 

limits has been extended. It also has been used for reliability modeling and 

life testing. Also, a new measure called Kullback-Leibler divergence for 

survival function is used and is a very much easier to compute in 

continuous distributions than the K-L divergence. It measures the distance 

between an empirical and a prescribed survival function. In this paper, we 

have estimated, Maximum Likelihood Estimator, Uniform Minimum 

Variance Unbiased Estimator and Kullback-Leibler Divergence for 

survival function of the Reliability Function of the Lomax Distribution. 

Also, Mean Square Error (MSE) values have been generated. R
th
 order raw 

moments and Mean Square Errors are presented in the form of theorems. 

Comparisons among UMVUE, MLE and KLS have been made to find out 

the best estimator. Detailed simulations show a greater performance of the 

KLS estimation method than the commonly used Uniform Minimum 

Variance Unbiased Estimation and Maximum Likelihood method in 

Lomax scale parameter estimation as this distance converges to zero with 

increasing sample size. The numerical results obtained from simulation has 

been illustrated. 

1. Introduction 

Reliability engineering that stresses trustworthiness in the life cycle 

administration of an item is a sub-discipline of system engineering. From the past 

several decades estimation of product reliability has attracted worldwide 
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attention. The estimation method generally begins with parameter estimation in 

perspective of test data. Reliability is firmly identified with accessibility, which 

is commonly portrayed as the capacity of a segment or framework to work at a 

predefined minute or interim of time. 

Lomax (1954) proposed a very useful distribution and names it as Lomax 

Distribution and used it for the various analyses such as for business failure life 

time data, reliability engineering, survival analysis, queuing theory, actuarial 

science and Internet traffic modelling. Lomax distribution is regarded as the 

heavy tailed distribution. 

The cumulative density function for two parameter Lomax distribution is defined 

by 

  1 1 ,  0, , 0.
x

F x x



 




 
     

 
   (1.1) 

The corresponding probability density function is 

 
 1

* 1 ,  0, , 0.
x

f x x




 
 

 

 
    

 
   (1.2) 

The survival function for two parameter Lomax distribution is given by: 

  1 ,  , 0.
x

R x



 




 
   
 

    (1.3) 

where,   is the scale parameter and   is the shape parameter of the distribution. 

In the past few decades, a considerable amount of research effort has also been 

devoted to developing and voluminous literature is available covering inferential 

problems related to various probability distributions or life time models. Al-Noor 

and Al-Amer (2014) has proposed some estimation methods for Burr Type XII

distribution to study the reliability function and shape parameter. Asrabadi 

(1990) have studied estimation in the Pareto distribution. Devi et al. (2017) 

obtained the entropy of Lomax probability distribution and its order statistics. 

Dixit et al. (2010) have derived efficient estimators in the Pareto distribution. He 

et al. (2014) discuss the estimation for Pareto distribution. Jalali and Watkins 

(2009) considered two-parameter Burr type XII distribution and studied three 

related aspects associated with ML estimation of parameters. Johnson et al. 

(1994) introduced the estimation of the parameters and the reliability of the 

distribution of Whipple and Rayleigh. Kern (1983) have derived minimum 

variance unbiased estimation in the Pareto distribution. Kumar et al. (2018) have 

estimated the probability density function of Lomax distribution. Soliman (2002) 

have computed the reliability estimation in generalized life-model and compared 
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it with application to the Burr- XII . Zimmer et al. (1998) presented probabilistic 

and statistical properties of the Burr type XII distribution. 

The Kullback-Leibler divergence given by Kullback and Leibler (1951) has 

many uses in science and engineering for the distance between two probability 

distributions. Although it is closely related to statistical issues such as model 

selection and parameter estimation, it has been used to a wide range of other 

analytical and experimental ideas. The reader is recommended to see (Dixit et al. 

2010 and Olver et al. 2010) for a list of applications. 

For two continuous random variables X  and Y  with probability density 

functions f and g  respectively, the K-L divergence of f  relative to g  is 

defined by: 

   
 

 
*ln  R

f x
D f g f x dx

g x
    (1.4) 

for x  such that   0g x  . The function  D f g  is always non-negative and it 

is zero if and only if f g . This definition is based on the density of two 

random variables which in general may or may not exist Gholamhossein et al. 

(2013). Even if the densities exist, it is difficult to determine them from sample 

data. No assurance exists that the estimated density will match its real value, 

even with a larger sample size. To solve the aforesaid difficulties, scholars have 

suggested several K-L estimate approaches. e.g. methods defined in 

(Gholamhossein et al. (2013) and Kullback & Leibler (1951)). Also, several 

alternative measures have been defined in the literature, e.g. in Perez-Cruz 

(2008). 

The aforesaid difficulties still persist when one tries to quantify the distance 

between a collection of data sample and a probability distribution using K-L 

divergence. Liu (2007) has defined a new divergence measure between sample 

data and a probability distribution which is based on the survival function of the 

random variable X , namely    f x P X x  , instead of its density function

 f x . The survival function is more conventional than the probability density 

because it exists continuously, can be accurately computed from data set, and its 

estimation is convergence by the law of large numbers. Reliability theory is 

based on the survival function, which is of interest and/or measurably important 

in the field. It quantifies the difference between an empirical survival function 

and a predefined survival function. Liu (2007) has used it to estimate the 

parameters of exponential and uniform distributions. Gholamhossein et al. (2013) 

have studied the estimation of the Weibull parameters by Kullback-Leibler 

divergence of Survival functions. Ramirez et al. (2009) have estimated the 

entropy and Kullback-Leibler divergence based on Szego's theorem. 

The paper is organized as follows: In sections 2 and 3, we have derived MLE and 

UMVUE of Reliability function respectively. R
th
 order raw moments and Mean 
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Square Errors are presented in the form of theorems. Kullback-Leibler 

divergence for survival function for the shape parameter of Lomax distribution 

has been discussed in section 4. Simulation study and Conclusion are given in 

sections 5 and 6 respectively to show the advantages of KLS over UMVUE and 

MLE of reliability function. 

2. MLE of Reliability Function of Lomax Distribution 

Let 
21, ,..., nX X X  be a random sample of size n  from the Lomax distribution. 

Using Maximum Likelihood method we can obtain the MLE of   represented a

 , where 

1

1

log 1
n

i

i

x
n







  
   

  
  

Using the Invariance property of MLE which states that “MLE's are invariant 

under functional transformation i.e., if ̂  is a MLE of   then any function of ̂  

say  ˆg   will be MLE for  g  ”, therefore we can obtain the estimator of 

reliability function with replacement of  ̂  instead of   in the reliability 

function. Then, 

 

1

1

* ln 1

, , 0

n
i

i

x
n

R x
x


 







  
  

   


 
  

 
 (2.1) 

As a notational convenience, let us use, 

  ln 1 ,
x

z z x


 
   

 
 

1
x x

dz
z z x

dx x 

 
    

 
,  

through rest of the paper. Therefore, we have, 

  ,  >0zR x e      (2. 2) 

We know that, pdf of 
1

ln 1
n

i

i

x
t



 
  

 
  follows Gamma distribution with 

parameters n  and  , thus, 

 
 

 
1*

*exp ,  0, 0
n nt

h t t t
n


 



   


 (2.3) 

Next, we have obtained the R
th
 order raw moments: 

In mathematical statistics, moments involve basic calculations through which 

some basic properties of probability distribution like mean, variance, skewness, 

kurtosis etc. can be derived. The moments of a distribution are a set of 
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parameters that outline it. Given an arbitrary variable X , its first moment about 

the origin, is defined to be  E X . Its second moment about the origin, is defined 

as the expected estimation of the arbitrary variable 
2X  or 

2E X 
  . In general, 

the R
th
 moment of X  about the origin, is characterized as 

rE X 
  . 

We can similarly characterize the R
th
 moment about the mean, by  E X r   . 

Note that the variance of the distribution, denoted by 2 , or  V X , is the same 

as second order moment. The third moment about the mean is utilized to build a 

measure of skewness, which describes whether the probability mass is more to 

left side or the right side of the mean, compared with a normal distribution. The 

fourth moment about the mean is utilized to build a measure of peakedness, or 

kurtosis, which measures the "width" of a distribution. 

Theorem 1: For 0n r  , the R
th
 raw moments of  R x  is given by 

  
 

   2
2*

nr

nE R x nr z K nr z
n

 


  (2.4) 

Where,  vK x  is the modified Bessel function Olver et al. (2010). 

Proof: We first need to note the well-known integral representation Olver et al. 

(2010), 

  1

0

21
* * e

42
xp

2
*

v

v v

x x dt
k x t

t t





  
    

   
  (2.5) 

The R
th
 order moment of MLE of Reliability function of Lomax distribution can 

be obtained as: 

      
0

*
rr

E R x R x h t dt



      

 
 

 
 

1

2

0

1
*exp

2

4

n
n zr

t t d t
n t

  







 
 

  
   
 

  (2.6) 

Taking, t h  , we get, 

 
 

 
2

1

0

1
e

4

2
* xp

r
nE R x h h

n h

n zr



 
          
 

  

By using Bessel function, we get, 
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   
 2

1

0

2
2 2 exp

4

r

n n

n zr dh
n zr k n zr h

h h


 



  

 
 

  
 
 
 

   (2.7) 

Using Connection formula Olver et al. (2010),    2 2n nn zr rk k n z   and 

after simplications we get R
th
 order moment of MLE of Reliability function in the 

form of following expression:   
 

   2
* 2

nr

nE R x nr z K
n

nr z 


 (2.8) 

Theorem 2: The mean square error of  R x  is given by 

 
 

   
 

   
2 4

*
2

2 * *2 2
n

nMSE R x K R x n z
n

n z n
n

z        
 

     2* 2n nK z R x   

where,  vK x  is modified Bessel function of second kind and  R x  is Reliability 

function of Lomax distribution. 

Proof: To obtain the MSE of MLE of Reliability function, we need to find second 

order moment that can be obtained by putting 2r   in (3.8). After substituting 

the required terms in      
2

2 2ˆ * RR xE x R x   
   ˆ*E R x 

 
, we can get the 

final expression for MSE  of MLE  of Reliability function. 
 

3. UMVUE of Reliability Function 

In statistics, Uniformly Minimum-Variance Unbiased Estimator (UMVUE) is an 

unbiased estimator that has minimum variance than any other unbiased estimator 

for all possible values of the parameter. Let 1 2, ,..., nX X X X  be a random 

sample from ( , );f x     (say) and   is a real-valued parameter related to . 

An unbiased estimator T(X) of  is called the Uniformly Minimum Variance 

Unbiased Estimator (UMVUE) if and only if V(T(X))  V(U(X)) for any    

and any other unbiased estimator U(X) of  . T is complete and sufficient 

statistic for the family ( , );f x    . The conditional density of  1X  given

1T T  is denoted by ( | )g x t  which is unbiased for ( , )f x  since, 

[ ( | )] ( | )* ( , )
t

E g x t g x t h t    (3.1) 
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       ( , , )
t

k x t dt   (3.2) 

                                               ( , )f x   (3.3)                       

where, ( , , )k x t   and ( , )f x   denote the joint pdf of 1X given 1T T . 

Therefore, UMVUE of Reliability function for Lomax distribution is defined by 

       ˆ( ) ( | )



 
x

R x g x dx    

2
1

* * 1

n

x

x

n z
z dx

t t


  

 
 

   

  

2
1

* * 1

n

x

n dz z
dx

t dx t


  

  
 

   

                    

1

1

1 ( )
*

1

n

n

n t z

t n





 


 

                                        

1

1

n
z

t



 
  
 

 

Therefore, the final expression for UMVUE of the reliability function for the 

Lomax distribution is 
1

ˆ( ) 1



 
  
 

n
z

R x
t

         (3.4) 

where, ln 1
x

z


 
  

 
 and 

1

1n

i

t
x 

 
  

 
 . 

Theorem 3: For 1n r  , the R
th
 raw moment of ˆ ( )R x  is given by 

 
( 1)ˆ( ) * ( )* ( 1,1 , )

( )

  
    



r nr r
E R x R x U nr r n n z

n
  (3.5)  

where, ( , , )U a b c  is the Kummer Confluent Hypergeometric function 

Gholamhossein et al. (2013). 

Proof: Note that the Kummer confluent hypergeometric function has an integral 

representation Gholamhossein et al. (2013), 

1 1

0

1
( , , ) *(1 ) * , 0, 0, .

( )

b a ctU a b c t t e dt c b a
a

 


       
   (3.6) 

and the proof is completed by using the Kummer transformation Gholamhossein 

et al. (2013), 

 
1( , , ) * (1 ,2 , )bU a b c e U a b b c       (3.7) 

 

The R
th 

order moment of UMVUE of reliability function of Lomax distribution is 

obtained by 
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0

ˆ ˆ[ ( )] ( ) * ( )



 
r rE R x R x h t dt   

       

( 1) 1

0

1 * *
( )

n r n n
tz t

e dt
t n


 

 
  

 
   

Put ,t h   we have, 

1

0

1ˆ[ ( )] ( ) * *
( )



      
 

r nr r nr r n zhE R x h z h e dh
n

  (3.8) 

By using Kummer Confluent Hypergeometric function, we get, 

( 1) 1 ( 1) ( 1) 1

0

1
( 1, 1, ) *(1 ) *

( 1)

nr r n nr r zhU nr r n z h h e dh
nr r




            
   

 

( 1) 1 ( 1) ( 1) 1

0

( 1). ( 1, 1, ) *(1 ) *nr r n nr r zhnr r U nr r n z h h e dh


               

         (3.9) 

After substituting (3.9) in (3.8), we have, 

1ˆ( ( )) *( ) * ( 1, 1, )    


r n

z
E R x z nr r n z

e n
     (3.10) 

Now, Kummer transformation is of the following form: 

           ( 1, 1, ) ( ) * (1 ,1 , )nU nr r n z z U nr r n n z            

On substituting the above expression in (3.10), we get, 

1ˆ[ ( )] * ( 1)* (1 ,1 , )       


r

z
E R x nr r U nr r n n z

e n
   

Therefore, we obtain the final expression in the following form: 

log 1( 1)ˆ( ( )) * ( )* ( 1,1 , );


 

    

   
      

  
 

x

r znr r
E R x R x U nr r n n z e e

n




    

 (3.11) 

Theorem 4: The mean square error of ˆ ( )R x  is given by 

2(2 1)ˆ( ( )) * ( )* ( 1,1 , ) ( )
 

   


n
MSE R x R x U n n z R X

n
     (3.12) 
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where, ( , , )U a b c  is the Kummer Confluent Hypergeometric function. 

Proof: Similarly, second order raw moment for ˆ ( )R x  can be obtained by putting 

r=2 in (3.11), i.e. 

 
2 (2 1)ˆ( ( )) * ( )* ( 1,1 , )

 
  



n
E R x R x U n n z

n
   

Therefore, after simplifications the mean square error of ˆ ( )R x is obtained as 

(3.12). 

4. Estimation of the Lomax Shape Parameter   by Kullback-Leibler 

Divergence of Survival Function 

In the Kullback-Leibler divergence for survival function, we use survival 

function in place of density functions and add a new term to make sure that the 

new measure is always a positive. Also, this definition fits with the principle that 

the logarithm of the probability of an event should represent the information 

content in the event.  

Next, first we recall the following definitions: 

Definition 1: Let 1 2, ,...X X  be a sequence of positive, independent and 

identically distributed random variables from a non-increasing survival function 

( , ) ( )F x P X x     with support Sx and vector of parameters .  Define the 

empirical survival function of a random sample of size n by 

   
1

1

[ , ]

1

( ) 1 * ( )
i i

n

n x x

i

i
G x I x

n 





 
  

 
       (4.1) 

Where, I is the indicator function and (0) (1) (2) ( )0 ... nX X X X      are the 

ordered sample. 

Definition 2:  Let ( , )F x   be the true survival function with unknown 

parameters   and ( )nG x  be the empirical survival function of a random sample 

of size n from ( , )F x  . Define the Kullback-Leibler divergence of Survival 

functions Gn  and  F  by : 

  
0

( )
( || ) ( )*ln ( ) ( )

( )

n
n n n

G x
KLS G F G x G x F x dx

F x



               (4.2) 

 

Gholamhossein et al. (2013) that the KLS is a divergence measure which 

converges to zero with increasing sample size. 
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The simplified form of (4.2) and is given as: 

 1

0

( )
( || ) ( )*ln ( )

( )

n
n n n

G x
KLS G F G x x E X dx

F x



     (4.3) 

where, E(X1)  is the mean of distribution under consideration. 
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where, 1 1i i ix x x     and 0 0x  . 

Equation (4.8) should be minimized for the values   to get the KLS estimation. 
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Substituting (4.9) in (4.8), we obtain, 
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which is the required expression for Kullback-Leibler Divergence for survival 

function for  estimation of the shape parameter  . 

5. Simulation Study and Results 

We performed simulation in MATLAB where a series of codes was written to 

generate values 1 2, ,..., nX X X  from Lomax distribution with α = 0.5 and λ = 1. 

For convenience we assumed α true = 0.5. To exemplify the effect of the sample 

size, random samples of different sizes n = 10, 20, 30, 50, 100, 200 and 500 were 

used. This set of simulated values was used to estimate the MLE and UMVUE of 

α using (2.1) and (3.4) and the parameter α using (4.9) to find the KLS for 

Lomax distribution. In this section, we introduce the simulation study which has 

been conducted to assess the statistical performance of the reliability function 

that we have obtained in the previous sections. To examine the performance of 

MLE, UMVUE and KLS some simple simulation studies have been conducted 

by considering values of the Reliability function of the Lomax distribution. 

Sample size is varied to observe the effect of small and large samples on the 

estimators. The results are listed in Table 1 and Table 2 for comparison purposes. 

Table (1) shows the estimates of the MLE, UMVUE and KLS of the Reliability 

function for λ = 1.0 and Table (2) shows the estimates of the MLE, UMVUE and 

KLS of the Reliability function for λ = 1.5 and the graphs for the values of α and 

λ are plotted respectively. 
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Table 1: UMVU, MLE and KLS estimates of R(t) for n = 10, 20, 30, 50, 100, 

200 & 500; α = 0.5, λ = 1.0. 

n↓ t↓ UMVUE BIAS MSE MLE BIAS MSE KLS BIAS MSE 

10 

0.2 0.4398 -0.325 0.1453 0.3955 -0.2945 0.1521 0.4621 -0.4281 0.1234 

0.4 0.3219 -0.2888 0.2562 0.2781 -0.2496 0.2787 0.457 -0.3855 0.1125 

0.6 0.2883 -0.2027 0.2807 0.224 -0.1784 0.3128 0.427 -0.352 0.1011 

0.8 0.2039 -0.3721 0.3292 0.1983 -0.3456 0.3483 0.369 -0.396 0.0984 

20 

0.2 0.4996 -0.2913 0.128 0.4944 -0.271 0.1217 0.553 0.1054 0.112 

0.4 0.3951 -0.27 0.2491 0.3678 -0.248 0.2902 0.4792 -0.358 0.1082 

0.6 0.3138 -0.2332 0.2671 0.3062 -0.2014 0.2699 0.438 -0.3114 0.1236 

0.8 0.2871 -0.2011 0.2723 0.2646 -0.1928 0.3208 0.3958 -0.273 0.13 

30 

0.2 0.5751 0.1921 0.1502 0.5738 0.1938 0.1343 0.5480 0.1201 0.1095 

0.4 0.4750 -0.2692 0.1520 0.4453 -0.2230 0.1868 0.4980 -0.2654 0.0822 

0.6 0.4070 -0.2721 0.2298 0.3670 -0.2400 0.2640 0.4368 -0.3260 0.1175 

0.8 0.3660 -0.3127 0.2410 0.3357 -0.2832 0.2921 0.3970 -0.3550 0.1284 

50 

0.2 0.6488 0.2795 0.1677 0.6648 0.3058 0.1188 0.5550 0.1399 0.0871 

0.4 0.5792 0.1965 0.1230 0.5069 0.1101 0.1436 0.5471 0.1165 0.0736 

0.6 0.5214 0.1033 0.1001 0.4297 -0.0803 0.0920 0.5017 0.0985 0.0326 

0.8 0.4095 -0.2701 0.2267 0.3534 -0.0887 0.2806 0.4562 -0.3204 0.0501 

100 

0.2 0.6488 0.2795 0.1677 0.6648 0.3058 0.1188 0.5510 0.1399 0.0722 

0.4 0.5792 0.1965 0.1230 0.5069 0.1101 0.1436 0.5370 0.1165 0.0681 

0.6 0.5214 0.1033 0.1001 0.4297 -0.0803 0.0920 0.5180 0.0985 0.0387 

0.8 0.4095 -0.2701 0.2267 0.3534 -0.0887 0.2806 0.4858 -0.3204 0.0402 

200 

0.2 0.6488 0.2795 0.1677 0.6648 0.3058 0.1188 0.5510 0.1399 0.0722 

0.4 0.5792 0.1965 0.1230 0.5069 0.1101 0.1436 0.5370 0.1165 0.0681 

0.6 0.5214 0.1033 0.1001 0.4297 -0.0803 0.0920 0.5180 0.0985 0.0387 

0.8 0.4095 -0.2701 0.2267 0.3534 -0.0887 0.2806 0.4958 -0.3204 0.0402 

500 

0.2 0.6488 0.2795 0.1677 0.6648 0.3058 0.1188 0.5510 0.1399 0.0722 

0.4 0.5792 0.1965 0.1230 0.5069 0.1101 0.1436 0.5370 0.1165 0.0681 

0.6 0.5214 0.1033 0.1001 0.4297 -0.0803 0.0920 0.5180 0.0985 0.0387 

0.8 0.4095 -0.2701 0.2267 0.3534 -0.0887 0.2806 0.4958 -0.3204 0.0402 

 

From Table 1 and Table 2, we observed that on comparing the estimates 

performance of KLS of R(t) is better than that of UMVUE of R(t) and MLE of 

R(t). Also observed with increasing sample size, the estimators values 

approaches to true value and MSE values are decreasing. Also, we observed that 

for large sample sizes, the estimator provide better estimation. Again, we 

observed that for λ = 1.5, the estimator provide better estimation than for λ = 1.0. 
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Table 2: UMVU, MLE and KLS estimates of R(t) for n = 10, 20, 30, 50, 100, 

200 & 500; α = 0.5, λ = 1.5. 

n↓ t↓ UMVUE BIAS MSE MLE BIAS MSE KLS BIAS MSE 

10 

0.2 0.4483 -0.3150 0.1217 0.4125 -0.3240 0.1435 0.4831 -0.4384 0.1113 

0.4 0.3299 -0.2519 0.2410 0.2999 -0.2663 0.2533 0.4625 -0.3921 0.1038 

0.6 0.2925 -0.2201 0.2791 0.2396 -0.1834 0.2866 0.4308 -0.3580 0.1007 

0.8 0.2150 -0.3725 0.3041 0.2123 -0.3466 0.3498 0.3854 -0.3981 0.0865 

20 

0.2 0.5125 -0.3023 0.1080 0.4992 -0.2918 0.1189 0.5419 0.1010 0.1099 

0.4 0.4158 -0.2925 0.2054 0.3812 -0.2681 0.2215 0.4940 -0.3889 0.1002 

0.6 0.3521 -0.2587 0.2271 0.3469 -0.2685 0.2528 0.4490 -0.3328 0.1185 

0.8 0.3056 -0.2253 0.2501 0.2836 -0.2144 0.2988 0.4122 -0.3181 0.1216 

30 

0.2 0.5621 0.1856 0.1425 0.5632 0.1825 0.1210 0.5314 0.1187 0.1022 

0.4 0.4958 -0.2755 0.1481 0.4628 -0.2436 0.1740 0.5102 -0.2763 0.0724 

0.6 0.4344 -0.2966 0.2001 0.3837 -0.2643 0.2441 0.4560 -0.3399 0.1102 

0.8 0.3927 -0.3233 0.2280 0.3605 -0.3021 0.2711 0.4288 -0.3620 0.1178 

50 

0.2 0.6145 0.2418 0.1503 0.6428 0.2996 0.1126 0.5400 0.1302 0.0811 

0.4 0.5533 0.1824 0.1164 0.5145 0.1112 0.1487 0.5365 0.1102 0.0711 

0.6 0.5204 0.1010 0.0997 0.4573 -0.0961 0.0876 0.5154 0.0968 0.0388 

0.8 0.4368 -0.2978 0.2104 0.3887 -0.1004 0.0453 0.4842 -0.3287 0.0498 

100 

0.2 0.6102 0.2521 0.1568 0.6466 0.2846 0.1107 0.5361 0.1302 0.0688 

0.4 0.5563 0.1855 0.1190 0.5012 0.1098 0.1340 0.5286 0.1106 0.0620 

0.6 0.5198 0.1010 0.0997 0.4423 -0.0912 0.0864 0.5120 0.0936 0.0314 

0.8 0.4226 -0.2782 0.2189 0.3760 -0.0942 0.2631 0.5014 -0.3244 0.0379 

200 

0.2 0.6102 0.2521 0.1568 0.6466 0.2846 0.1107 0.5361 0.1302 0.0688 

0.4 0.5563 0.1855 0.1190 0.5012 0.1098 0.1340 0.5286 0.1106 0.0620 

0.6 0.5198 0.1010 0.0997 0.4423 -0.0912 0.0864 0.5120 0.0936 0.0314 

0.8 0.4226 -0.2782 0.2189 0.3760 -0.0942 0.2631 0.5014 -0.3244 0.0379 

500 

0.2 0.6102 0.2521 0.1568 0.6466 0.2846 0.1107 0.5361 0.1302 0.0688 

0.4 0.5563 0.1855 0.1190 0.5012 0.1098 0.1340 0.5286 0.1106 0.0620 

0.6 0.5198 0.1010 0.0997 0.4423 -0.0912 0.0864 0.5120 0.0936 0.0314 

0.8 0.4226 -0.2782 0.2189 0.3760 -0.0942 0.2631 0.5014 -0.3244 0.0379 

6. Conclusion 

In this paper, we have obtained UMVUE, MLE and KLS for the Reliability 

function (RF) of Lomax Distribution. The R
th
 order raw moments are obtained 

for the MLE and the UMVUE of the Reliability function. From the results of 

simulation study, conclusions are drawn regarding the behaviour of the 
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estimators. Estimates for KLS, MLE and UMVUE of Reliability function have 

been estimated. From Table 1 and Table 2, it can be easily observe that the KLS 

estimates work more efficiently than the MLE and UMVUE for the RF for 

different sample sizes and different values of the parameters λ. Therefore, we 

conclude that KLS is more efficient than MLE and UMVUE for Reliability 

function of Lomax distribution. 
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