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ABSTRACT  

This paper proposes a new Holistic and Generalized Continuous Semi-

bounded distribution which is also called as H-G family of Semi-bounded 

distribution. The density function of the proposed distribution is expressed in 

terms of Kummer’s U function. The cumulative distribution function and the 

constants such as Central moments, Non-central moments, Skewness, 

kurtosis, Shannon’s differential entropy are also computed. Moreover, the 

generating functions such as moment, Cumulant, Characteristic, Survival, 

hazard and Cumulative functions are also derived. The special cases of the 

H-G family are visualized by shifting the location, scale and shape 

parameters, two broad and generalized families namely Amoroso (or) 

Gamma and Beta Prime family of distributions are shown. Under these two 

families, 56 distributions include Generalized scaled and generalized families 

of Semi-bounded are exhibited by the authors. Almost all the families of 

Semi-bounded distributions are special cases of the proposed H-G family and 

we also discussed the estimation of parameters by the method of 

unconstrained and constrained maximum likelihood approach by using Non-

linear Programming with some applications. Finally, the motivation of the 

paper is to provide a single distribution which is holistic and generalized 

nature, in which a semi-bounded random variable has the entirety through the 

H-G family of distribution. 

Some Preliminaries 

Explicit expressions for the PDF of H-G family of distribution and the 

Calculation of constants, generating functions and estimation of the distribution 

involve several special functions (Prudnikov et al. (1986) & Gradshteyn and 

Ryzhik (2000)) and they are given as follows: 
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1. The integral representation of the Kummer’s U function is defined by 
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2. The Generalized hyper geometric function of order p and q is defined as 
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3. The Gauss hyper geometric function is defined as 
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4. The rising factorial or Pochammer symbol is given as 
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5. The integral representation of the Gamma function is defined by 
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6. The integral representation of the lower Incomplete Beta function is defined by 
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7. The integral representation of the Di-Gamma function due to Gauss is defined 

by 
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8. The Binomial expression of the following series is given by 
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9. The Series representation of the Kummer’s U function is defined by 
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10. The first derivative of the Series representation of Kummer’s U function with 

respect ‘ ’ is given as 
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11. The first derivative of the Series representation of Kummer’s U function with 

respect‘ ’   is   given as 
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12. The first derivative of the Series representation of Kummer’s U function with 

respect to ‘ a ’ is given as 
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13. The first derivative of the Series representation of Kummer’s U function with 

respect to ‘ b ’ is given as 
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1. Introduction to Generalized Distributions 

A common problem is that of describing the probability distribution of a single, 

continuous variable. A few distributions, such as the normal and exponential, 

were discovered in the 1800’s or earlier. But about a century ago the great 

statistician, Karl Pearson, realized that the known probability distributions were 

not sufficient to handle all of the phenomena then under investigation, and set out 

to create new distributions with useful properties. During the 20th century this 

process continued with abandon and a vast menagerie of distinct mathematical 

forms were discovered and invented, investigated, analyzed, rediscovered and 

renamed, all for the purpose of describing the probability of some interesting 

variable. There are hundreds of named distributions and synonyms in current 

usage. The apparent diversity is unending and disorienting. Fortunately, the 

situation is less confused than it might at first appear. Most common, continuous, 

univariate, unimodal distributions can be organized into a small number of 

distinct families, which are all special cases of a single Grand Unified 
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Distribution. The Amoroso, gamma and beta prime family of distributions are 

considered to be the generalized family of semi-bounded distributions. It includes 

gamma-exponential, Log-normal, Pearson, Pearson type VII, beta, beta prime, 

beta exponential, prentice, Pearson IV and many more. The applications of the 

generalized distributions are extensively studied and the authors shown some of 

the important and interesting applications are as follows. 

Application of Generalized Distributions 

Moghaddam et al. (2019) argued that a stochastic model of economic exchange, 

whose steady-state distribution is a Generalized Beta Prime (also known as 

GB2), and some unique properties of the latter, are the reason for GB2’s success 

in describing wealth/income distributions. They use housing sale prices as a 

proxy to wealth/income distribution to numerically illustrate this point. The 

authors also explored parametric limits of the distribution to do so analytically. 

They discuss parametric properties of the inequality indices – Gini, Hoover, Theil 

T and Theil L – vis-a-vis those of GB2 and introduce a new inequality index, 

which serves a similar purpose. They argued that Hoover and Theil L are more 

appropriate measures for distributions with power-law dependencies, especially 

fat tails, such as GB2. 

Bhatti et al. (2019) presented a generalized log Burr III (GLBIII) distribution 

developed on the basis of a generalized log Pearson differential equation (GLPE). 

The density function of the GLBIII is exponential, arc, J, reverse-J, bimodal, left-

skewed, right-skewed and symmetrical shaped. The hazard rate function of 

GLBIII distribution has various shapes such as constant, increasing, decreasing, 

increasing-decreasing, upside-down bathtub and modified bathtub. Descriptive 

measures such as quantile function, sub-models, ordinary moments, moments of 

order statistics, incomplete moments, reliability and uncertainty measures are 

theoretically established. The GLBIII distribution is characterized via different 

techniques. Parameters of the GLBIII distribution are estimated using maximum 

likelihood method. A simulation study is performed to illustrate the performance 

of the maximum likelihood estimates (MLEs). Goodness of fit of this distribution 

through different methods is studied. The potentiality and usefulness of the 

GLBIII distribution is demonstrated via its applications to two real data sets. 

Oladipo (2019) investigated the polynomials whose coefficients are generalized 

distribution. Convolution via generalized poly-logarithm and subordination 

methods were employed to obtain the upper bounds for the first few coefficients 

of the class defined. Furthermore, relevant connections to Fekete-Szego classical 

theorem were established, particularly in conic region. Conclusively, 
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consequences of various choices of parameters involved were pointed out. The 

results further established geometric properties of the generalized distribution 

associated with univalent functions. 

Clementi (2018) proposed the k-generalized distribution as a model for 

describing the distribution and dispersion of income within a population. 

Formulas for the shape, moments and standard tools for inequality 

measurement—such as the Lorenz curve and the Gini coefficient—are given. A 

method for parameter estimation is also discussed. The model is shown to fit 

extremely well the data on personal income distribution in Australia and the 

United States. 

Ramoz and louzada (2018) presented a Bayesian reference analysis for the 

generalized gamma distribution by using a reference prior, which has important 

properties such as one-to-one invariance under reparameterization, consistent 

marginalization, consistent sampling and leads to a proper posterior density.  

Tripathi et al. (2018) introduced a generalized inverse x-gamma distribution 

(GIXGD) as the generalized version of the inverse x-gamma distribution. The 

proposed model exhibits the pattern of non-monotone hazard rate and belongs to 

family of positively skewed models. The explicit expressions of some 

distributional properties, such as, moments, inverse moments, conditional 

moments, mean deviation, quantile function have been derived. The maximum 

likelihood estimation procedure has been used to estimate the unknown model 

parameters as well as survival characteristics of GIXGD. The practical 

applicability of the proposed model has been illustrated through a survival data of 

guinea pigs. 

Mansoor et al. (2018) introduced a three-parameter extension of the exponential 

distribution which contains sub-models as the exponential, logistic-exponential 

and Marshall-Olkin exponential distributions. The new model is very flexible and 

its associated density function can be decreasing or unimodal. Further, it can 

produce all of the four major shapes of the hazard rate, that is, increasing, 

decreasing, bathtub and upside-down bathtub. Given that closed-form 

expressions are available for the survival and hazard rate functions, the new 

distribution is quite tractable. It can be used to analyze various types of 

observations including censored data. Computable representations of the quantile 

function, ordinary and incomplete moments, generating function and probability 

density function of order statistics are obtained. The maximum likelihood method 

is utilized to estimate the model parameters. A simulation study is carried out to 

assess the performance of the maximum likelihood estimators. Two actual data 

sets are used to illustrate the applicability of the proposed model. 
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The Generalized gamma (GG) distribution plays an important role in statistical 

analysis. For this distribution, Ramos et al. (2017) derived non-informative 

priors using formal rules, such as Jeffreys prior, maximal data information prior 

and reference priors. We have shown that these most popular formal rules with 

natural ordering of parameters, lead to priors with improper posteriors. This 

problem is overcome by considering a prior averaging approach discussed in 

Berger et al. [Overall objective priors. Bayesian Analysis. 2015;10(1):189–221]. 

The obtained hybrid Jeffreys-reference prior is invariant under one-to-one 

transformations and yields a proper posterior distribution. The authors obtained 

good frequentist properties of the proposed prior using a detailed simulation 

study. Finally, an analysis of the maximum annual discharge of the river Rhine at 

Lobith is presented. 

Progri (2016) discussed the exponential generalized Beta distribution (EGBD). 

For the EGBD model the author provided the closed form expression of the 

cumulative distribution function (cdf), statistics for special cases and the 

computation of the mean and variance for the general case. Numerical results are 

derived for each case to validate the theoretical models presented in the paper. As 

seen from the equations in the paper, for the computation of the mean requires 

only two digamma functions and one hypergeometric function; however, the 

computation of the variance requires the computation of two polygamma 

functions of the first order, two digamma functions, one hypergeometric function, 

and two Kampé de Fériet functions. 

VedoVatto et al. (2016) introduced a new four-parameter model called the 

Exponentiated Generalized Nadarajah-Haghighi (EGNH) distribution in order to 

verify this requirement. They proved that its hazard rate function can be constant, 

decreasing, increasing, upside-down bathtub and bathtub-shape. Theoretical 

essays are provided about the EGNH shapes. It includes as special models the 

exponential, exponentiated exponential, Nadarajah-Haghighi’s exponential and 

exponentiated Nadarajah-Haghighi distributions. The authors presented a 

physical interpretation for the EGNH distribution and obtain some of its 

mathematical properties including shapes, moments, quantile, generating 

functions, mean deviations and Renyi entropy. They estimated its parameters by 

maximum likelihood, on which one of the estimates may be written in closed-

form expression. This last result is assessed by means of a Monte Carlo 

simulation study. The usefulness of the introduced model is illustrated by means 

of two real data sets. The authors hope that the new distribution could be an 

alternative to other distributions available for modeling positive real data in many 

areas. 
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Merovci (2014) generalized the generalized Rayleigh distribution using the 

quadratic rank transmutation map studied by Shaw et al. to develop a transmuted 

generalized Rayleigh distribution. The author provided a comprehensive 

description of the mathematical properties of the subject distribution along with 

its reliability behavior. The usefulness of the transmuted generalized Rayleigh 

distribution for modeling data is illustrated using real data. 

Potdar and Shirke (2013) introduced a generalized inverted scale family of 

distributions. Maximum likelihood estimators (MLEs) of scale and shape 

parameters are obtained. Asymptotic confidence intervals for both the parameters 

based on the MLE are also constructed. Generalized inverted half-logistic 

distribution is considered as a member of the generalized inverted scale family. 

Simulation study is conducted to investigate performance of estimates and 

confidence intervals for this distribution.  

Cordeiro et al. (2012) proposed and studied the Kumaraswamy generalized half-

normal distribution for modeling skewed positive data. The half-normal and 

generalized half-normal (Cooray and Ananda, 2008) distributions are special 

cases of the new model. Several of its structural properties are derived, including 

explicit expressions for the density function, moments, generating and quantile 

functions, mean deviations and moments of the order statistics. They investigated 

maximum likelihood estimation of the parameters and derive the expected 

information matrix. The proposed model is modified to open the possibility that 

long-term survivors may be presented in the data.  

Nassar and Nada (2011) proposed a new distribution called the beta-generalized 

Pareto. Several properties of this distribution are presented. The expressions for 

the mean, mean deviation, variance, and entropies are obtained. The method of 

maximum likelihood is proposed to estimate the parameters of the distribution. 

The flexibility of this distribution is illustrated in an application to a real data set. 

Elfattah et al. (2010) obtained the tables of critical values of modified 

Kolmogorov-Smirnov (KS) test, Cramer-Von Mises (CVM) test, Anderson-

Darling (AD) and Watson test for generalized Frechet distribution with unknown 

parameters. The sampling distributions for these tests statistics are investigated. 

Here, they Monte Carlo and Pearson system techniques to create tables of critical 

values for such situations. Furthermore, we present power comparison between 

KS test, CVM test, AD test and Watson test.  

Scott et al. (2009) demonstrated a recursive method for obtaining the moments 

of the generalized hyperbolic distribution. The method is readily programmable 

for numerical evaluation of moments. For low order moments we also give an 

alternative derivation of the moments of the generalized hyperbolic distribution. 
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The expressions given for these moments may be used to obtain moments for 

special cases such as the hyperbolic and normal inverse Gaussian distributions. 

Moments for limiting cases such as the skew hyperbolic t and variance gamma 

distributions can be found using the same approach. 

Based on the above reviews and applications of the generalized distributions, the 

authors motivated to propose a Holistic and generalized family of distribution 

which is called as H-G family of distribution with semi-bounded nature of the 

random variable, where almost all the family of semi-bounded distributions 

comes under the H-G family. The characteristics and properties of the proposed 

distribution are extensively studied in the following sections. 

H-G Family of Distribution 

Definition 1.1: Let X be the random variable followed H-G family of distribution 

with a single location   ,three scale parameters  , ,a b  and three shape 

parameters  , ,   ,then it’s density function is defined as 
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Kummer’s U function respectively. 
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Theorem 1.3: The cumulative distribution function of the H-G family of 

distribution is defined by 
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Where  B  is the lower Incomplete beta function respectively. 

Proof: Let the Cumulative distribution function of a distribution is  
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  
  
     


 (1.4)                                           

By Setting   /t b s


    in (1.4), then the integral becomes 

    
 

 

  / /1
1

1

0

, , /
1

b x a b t
t e

U a b dt
t


  

 
  

 


 
 


  (1.5) 

Similarly, expand the exponent 
   /

0

/ / !
ka b t k

k

e a b t k






    in (1.5), and then 

the final integral expression can be written as 

      
 

 

  / 1
1

1
0 0

/
, , /

! 1

k b x k

X k k
k

a b t
F x U a b dt

k t


  

 
  

  


   



 


   (1.6) 

Finally, integrate (1.6), then the final expression of CDF as  

      
 

   1

0

/
, , / / ; ,1

!

k

X

k

a b
F x U a b B b x k k

k


      






 
      

 
 

  

2. Constants 

Theorem 2.1: The rth
 moment of the H-G family of distribution is given as 

 
   

         1/

0

/ / / , / , /
, , /

r r
k

r

X

k

r
E x b k U k k a b

kU a b


       

   

 
     
  

  (2.1) 
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Proof: The thr order moment of the distribution is  

      

1

1

1
, , /

1

x
a

r r

X

x
e

E x b U a b x dx

x
b








 





    





  
  

 




 

 
 
  
  
     

  

By Setting   /z X     , then the integral becomes 

      
 

1
1

1

0

, , /
1

az
r z e

b U a b z dz
bz




 


     
  



 
  


  (2.2) 

Now expand the term  
r

z  by using binomial series, setting S bz  and 

integrate (2.2) then the thr order moment of the distribution is 

 
   

         1/

0

/ / / , / , /
, , /

r r
k

r

X

k

r
E x b k U k k a b

kU a b


       

   

 
     
  

  

 (2.3) 

From (2.3), If r =1, 2, 3, 4 then the following order moments are given as 

 
   

         
1

1/

0

1
/ / / , / , /

, , /

k

X

k

E x b k U k k a b
kU a b


       

   

 
     
  

  

 (2.4) 

 
   

         
2 2

2 1/

0

2
/ / / , / , /

, , /

k

X

k

E x b k U k k a b
kU a b


       

   

 
     
  

  

 (2.5) 

 
   

         
3 3

3 1/

0

3
/ / / , / , /

, , /

k

X

k

E x b k U k k a b
kU a b


       

   

 
     
  

  

 (2.6) 

 
   

         
4 4

4 1/

0

4
/ / / , / , /

, , /

k

X

k

E x b k U k k a b
kU a b


       

   

 
     
  

  

 (2.7) 

Theorem 2.2: The Skewness and Kurtosis of the H-G family of distribution is 

given as  

  3

3/2

2

K
Skew X

K
  (2.8) 
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  4

2

2

K
Kurtosis X

K
  (2.9) 

where
2K ,

3 4,K K  are the Central moments of the distribution respectively. 

Proof: The thr central moments of the distribution are given as 

  
r

r X XK E x E x   (2.10) 

From (2.10), If r =1, 2, 3, 4 then the following central moments are given as 

  1 0X XK E x E x    (2.11) 

       
2 22

2 X X X XK E x E x E x E x     (2.12) 

           
3 33 2

3 4 3X X X X X XK E x E x E x E x E x E x      (2.13) 

          
4 4 2 3

4 2 7 8X X XK E x E x E x E x E x E x      (2.14) 

Then substitute the Non-central moments from (2.4), (2.5), (2.6) and (2.7) in 

(2.11), (2.12), (2.13) and (2.14), we get the exact structure of the Central 

moments and then Substitute these in (2.8) and (2.9), the skewness and Kurtosis 

of the H-G family of distribution is found. 

Theorem 2.3: The Shannon’s differential entropy of the H-G family of 

distribution is 

 
4

1

, , , , ,j

j

h a b    


  (2.15) 

Proof: It is found from 

    logX Xh f x f x dx




 

         

1 1

1 1

1 1
, , / log , , /

1 1

x x
a ax x

e e

b U a b b U a b dx

x x
b b

 
  

 

 

   
 



 

 
         

 

 

     
    

   


 

   

 
     

           
        
                   


 

 (2.16) 

By Setting   /S b x


    and integrate (2.16), we will get the final form 

of Shannon’s differential entropy is 
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 
4

1

, , , , ,j

j

h a b    


  (2.17) 

where 
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 

 
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    

 
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 
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 
                                
     
  

  
  


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




          


  

  ,    and  U are the Gamma, Di-gamma and Kummer’s U functions 

respectively. 

3. Generating Functions 

Theorem 3.1: The Moment generating function of H-G family of distribution is 

given as  

 
   

  
       
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 (3.1) 

Proof: Let the moment generating function of a distribution is given as 
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

 
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  
  
     

  

 (3.2) 

By Setting   /z X     and expand the exponent in (3.2), then the integral 

becomes 



HG family of Continuous semi-bounded distribution… 

 

65 

 

    
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   

 (3.3) 

Rewrite (3.3) by Setting S bz , then integrate it and the final form of MGF is 

given as 
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   
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Theorem 3.2: The Cumulant of the H-G family of distribution is  
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 (3.4) 

Proof: It is found from   

logX XC t M t  

Theorem 3.3: The Characteristic function of the H-G family of distribution is 

given as 
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 (3.5) 

Proof: Let the Characteristic function of a distribution is given as 
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

 
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     

  

 (3.6) 

By Setting   /z X     and expand the exponent in (3.6), then the integral 

becomes 
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   

 (3.7) 
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Rewrite (3.7) by Substituting S bz , then integrate and the final form of CF is 

given as 

 
   

 
       
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
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Theorem 3.4: The survival function of the H-G family of distribution is 

      
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  

 (3.8) 

Where  B  is the lower Incomplete Beta function respectively. 

Proof: It is found from the following fact 

   1X XS x F x   

Theorem 3.5: The hazard function of the H-G family of distribution is 
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                  (3.9)                                                

Proof: It is found from 

 
 

 
X

X

X
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Theorem 3.6: The Cumulative hazard function of the H-G family of distribution 

is     
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Proof: Let the Cumulative hazard function of a distribution is given as 

    log 1X XH x F x    

  log SX x 
 

1

0

/
log 1 , , / / ; ,1

!

k

X

k

a b
H x U a b B b x k k

k
 

4. Special Cases of H-G Family 

Result 4.1 : Table-1 shows the two important broad families of H-G family as 

special cases from (1.1) for different settings of parameters are given. 

Table1 

Case 

No 

Generalized 

family 

Parameters 

Location Scale Shape 

  a  b          

1 
Amoroso & 

Gamma 
  1 1       1   

2 Beta Prime   0 1       1   

 

Result 4.2 : Table-2 shows the sub and generalized Amoroso and Gamma family 

of distribution from the H-G family as special cases for different settings of 

parameters are given. 

Table 2 

Case 

No. 
Amoroso family 

Parameters 

Location Scale Shape 

        

1 Stacy 0       

2 Half exponential power     1/     

3 Generalized Fisher tippet   1// n   n    

4 Fisher tippet     1   

5 Generalized Frechet   1// n   n  < 0 

6 Frechet     1 < 0 
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7 Scaled Inverse chi 0 21/ 2  / 2k  -2 

8 Inverse chi 0 1/ 2  / 2k  -2 

9 Inverse Rayleigh 0 21/ 2  1 -2 

10 Pearson Type V       -1 

11 Inverse Gamma 0     -1 

12 
Scaled Inverse Chi-

square 
0 1/ 2  / 2k  -1 

13 Inverse Chi-square 0 ½ / 2k  -1 

14 Levy   / 2  ½ -1 

15 Inverse exponential 0   1 -1 

16 Pearson Type III       1 

17 Gamma 0     1 

18 Erlang 0 >0 n  1 

19 Standard Gamma 0 1   1 

20 Scaled Chi-square 0 2  / 2k  1 

21 Chi-square 0 2 / 2k  1 

22 Exponential     1 1 

23 Wien 0   4 1 

24 Hohlfeld 0   2/3 3/2 

25 Nakagami       2 

26 Scaled Chi 0 2  / 2k  2 

27 Chi 0 2  / 2k  2 

28 Half normal 0 2  ½ 2 

29 Rayleigh 0 2  1 2 

30 Maxwell-Boltzmann 0 2  3/2 2 

31 Wilson- Hilferty 0     3 

32 Generalized Weibull   1// n   n  > 0 

33 Weibull     1 > 0 

34 Pseudo-Weibull     
 

1 1/   > 0 

 

  



HG family of Continuous semi-bounded distribution… 

 

69 

 

Result 4.3: Table-3 shows the sub families of generalized beta Prime distribution 

from the H-G family as special cases for different settings of parameters are 

given. 

Table 3 

Case 

No. 

Generalized  

Beta Prime family 

Parameters 

Location 
          

Scale 
Shape 

          

1 Burr     1     

2 Dagum 0 1   1   

3 Paralogistic 0 1 1     

4 
Inverse 

Paralogistic 
0 1   1   

5 log-logistic 0   1 1   

6 Transformed Beta 0         

7 
Half Generalized 

Pearson VII 
    1/  1/m     

8 Beta Prime         
 

1 

9 Lomax     1   1 

10 Inverse Lomax       1 1 

11 
Standard Beta 

Prime 
0 1     1 

12 F 0 
2 1/k k  1 / 2k  2 / 2k  1 

13 Uniform Prime     1 1 1 
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14 Exponential ratio 0   1 1 1 

15 Half-Pearson VII     1/2   2 

16 
Generalized Scaled 

Half Cauchy 
    1/    1 1/     

17 
Generalized Half 

Cauchy 
0 1 1/    1 1/     

18 
Scaled Half 

Cauchy 
    1/2 1/2 2 

19 
Generalized scaled 

Half - t 
  1/v   1/   /v     

20 Generalized Half-t 0 
1/2v  1/   /v     

21 
Scaled 

Half-t 
  1/2v  1/ 2  / 2v  2 

22 Half-t 0 1/2v  1/ 2  / 2v  2 

 

5.  Parameter Estimation 

Result 5.1: As a first approach, we consider the estimation by the method of 

maximum likelihood. The log-likelihood function for a random sample 

1 2 3 1, , , , ,n nx x x x x   from (1.1) is 

 

    

   
1 1 1

log log log log log , , /
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i i i

i i i

n b U a b

L a b x x x
a b

 

     

       
  

    

     
 

          
                      

  
 

 (5.1) 

The first order derivatives of (5.1) with respect to seven parameters are  
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                  
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 (5.2) 

 
   

 
1

1 1

1log
1

n n
ii

i i i

b xxL n n a

b x



 

   


       


 

     
               

   

 (5.3) 
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 
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and 
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n
i

i

U a b xL
n b
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
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   

   
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  (5.8) 

Setting these expressions to zero and solving them simultaneously yields the 

maximum likelihood estimates of the seven parameters. 

Result 5.2: As a second approach, the authors realized that the computational 

complexity of the maximum likelihood estimation of the proposed distribution is 

Painstaking due to the non-linearity of parameters and the involvement of special 

functions. Hence, they moved to the Non-linear programming approach by 

adopting Constrained Maximum likelihood method to estimate the parameters of 

the H-G family of distribution and the idea is to Maximizing the log-likelihood 

function from (5.1) under some restriction and parameter constraints and it given 

as follows: 
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  
 (5.9) 

Subject to the constraints
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6.  Application 

In this Section, we now illustrate an application of the H-G family of distribution 

for the 4 variables namely Sepal length (Sepal length of Iris Setosa, Versicolour, 

Virginica in cms), Plasma glucose (Plasma glucose concentration a 2 hours in an 

oral glucose tolerance test), Nitric Oxides(nitric oxides concentration (parts per 

10 million)) and Age-at-attack(age in years when heart attack occurred) with a 

random sample size of (n=30).The variables are collected from the Databases 

such as Iris Plants data(1936), Pima Indians Diabetes(1988), Boston Housing 

data(1993) and Echocardiogram data (1988)  respectively. The information 

regarding the databases are clearly given in the references. The authors realized 

the computational difficulties in the classical unconstrained Maximum likelihood 

method and hence they adopted Non-linear programming approach to estimate 

the parameters by using the constrained Maximum likelihood method with the 

help of Optimization Module in the best known Mathematical Software Maple 

version 18 and the estimated results of Parameters with a 5 digit decimal 

approximation are tabulated in Table-4 and the fitted pdf of H-G family of 

distribution are visualized as  follows: 

Table-4: Parameter estimates of the H-G family of distribution. 
 

No. Variable 

Constrained Maximum likelihood estimators of parameters 

Location Scale Shapes 
Maximized 

Log- 

  a  b        γ  
 Max logL

 

1 
Sepal 

Length 
1.03774 0.83608 1.05925 1.10082 1.22388 0.90946 0.89539 -0.001016 

2 
Plasma 

Glucose 
1.00289 0.28393 1.27425 1.16024 1.89387 0.24374 0.55255 -0.002678 

3 
Nitric 

Oxide 
1.10086 0.88457 1.06468 1.04751 1 1 0.97722 

-0.000188 

 

4 

Age at 

Heart 

attack 

1.00552 0.44988 1.19307 1.17515 1.63858 0.37745 0.68032 

 

-0.002499 

 

 

7. Discussion and Conclusion 

In this paper, the authors introduced a new seven parameter Kummer’s holistic 

and generalized family of distribution with semi-bounded which is called as H-G 

family of distribution. The Characteristics of the distribution was studied in detail 

and interesting aspect of the proposed distribution due to its special cases. So far 

in the literature, the grand unified distribution (GUD) is considered to be the 
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generalized family of distribution which all the existing distributions come under 

the special cases of GUD. But the proposed H-G family is a synonymous family 

where the two broad and generalized families namely Amoroso and gamma, beta 

prime are coming under the proposed distribution with semi-bounded nature. By 

changing the location, scale and shape parameters of the H-G distribution, almost 

all the generalized and scaled versions of the semi-bounded distributions come 

under the H-G family. Moreover, the use of Jacobean transformations of standard 

H-G random variable such as inverse, logarithmic, exponential, transcendental 

and trigonometric transformations helps the standard H-G family to evolves more 

generalized family of distributions includes the Finite family. Finally, the authors 

exhibited the parameter estimation by Constrained Maximum likelihood method 

and the authors left the computational complexity of parameters in the proposed 

distribution by using classical maximum likelihood method for future research. 
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Probability curve of fitted pdf of H-G family of distribution 
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