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ABSTRACT  

The Rayleigh Mixture ROC Curve can be applied when the lifetime data is 

heterogeneous or population consists of many subpopulations. We have 

proposed Rayleigh Mixture Receiver Operating Characteristic (ROC) 

model and also discussed its properties. Area under the Rayleigh Mixture 

ROC Curve (AUC) and its Variance are also found. Estimates of the 

parameters of Rayleigh Mixture ROC Curve are derived by using the 

Maximum Likelihood Method (EM) algorithm and Method of Moments. 

The proposed model is validated by using the simulation studies and real 

life example of head trauma data. It is found that the estimates using EM 

algorithm are closer to parameters as compared to the estimates using 

Method of Moments for large sample sizes. 

1. Introduction 

Rayleigh Mixture distribution has many real life applications in lifetime testing 

of an object. The lifetime of an object depends upon its age. The Rayleigh 

Mixture distribution is mainly used in the field of Reliability theory, Survival 

analysis, Probability theory and Operations research. This distribution has 

valuable attention in the field of medical diagnosis also, such as in the study of 

Magnetic Resonance Imaging (MRI).  

The mixture distribution was introduced in 19
th
 century. Newcomb (1886) 

discussed the mixture distribution for outliers. Pearson (1894) also discussed the 

mixture distribution. He derived the estimates of two components normal mixture 

using method of moments. The first comprehensive study on finite mixture 

distribution is given by Everitt and Hand (1981). In this book, they discussed the 
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various estimation methods on finite mixture distribution along with the different 

types of mixture distribution. Titterington et al. (1985) also gave a nice 

discussion on finite mixture distribution with its properties in their text book. 

They also discussed different applications of the finite mixture distribution in 

their monograph. McLachlan and Peel (2000) discussed the different estimation 

methods of finite mixture distribution. They also mentioned the various 

applications on finite mixture models. 

Identifiability is an important assumption for the estimation in finite mixture 

distribution. This lay out the unique characterization of the distribution. The 

estimation procedure of mixture distribution is not well defined without the 

identifiability. Yakowitz and Spragins (1968) discussed the exponential families 

of mixture distribution are identifiable. In this article, we are taking two 

component Rayleigh Mixture distribution. The Rayleigh Mixture distribution is a 

member of exponential family, so it is also identifiable.    

Karim et al. (2011) discussed the Rayleigh Mixture distribution by taking the 

weight as sampling distributions like chi-square, t and F distribution. In this 

paper, they studied the moments, characteristic functions and shape characteristic 

of mixture distributions. Abushal et al. (2012) studied the estimation of Rayleigh 

Mixture distribution on the basis of generalized order statistics. In the article, 

they discussed the Bayesian estimates and MLE estimates both (point and 

interval) of the Rayleigh mixture distribution by using MCMC (Markov chain 

Monte Carlo) method. Dass and Kim (2012) discussed the ROC Curve using 

multivariate normal mixture. They used Bayesian and semi parametric inference 

for estimation. Gonen (2013) discussed the mixture ROC Curve. He proposed the 

AUC and partial AUC of normal mixture ROC Curve and also studied the 

comparison of bi-normal, two components normal and three components normal 

mixture ROC Curve. He discussed the estimation method of mixture ROC Curve 

using EM algorithm. Sindhu et al. (2014) studied the Bayes estimates of two 

components Rayleigh mixture distribution under doubly censoring. In this paper, 

they discussed the Bayes estimates of the Rayleigh mixture distribution under 

censoring. Ali (2014) derived the Bayesian estimates of mixture of the inverse 

Rayleigh distribution using informative and non-informative priors because of 

skewness and applicable in many fields. He did the simulation studies for 

censored data to compute the posterior distribution. Pundir and Azharuddin 

(2014) derived the Exponential Mixture ROC (EMROC) Curve. They have also 

studied the properties and AUC EMROC Curve. They have also discussed the 

comparative studies using the estimates of MLE via EM algorithm and Method 

of moments. Aslam et al. (2015) discussed the three component mixture of 
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Rayleigh Distributions. In this paper, they studied properties and estimation of 

Rayleigh mixture distribution in Bayesian perspective and also discussed 

Bayesian estimates of Rayleigh mixture distribution by using different prior and 

loss function. The sample sizes are large then the Bayes estimates are found to be 

more accurate as compared to the small sample size. Cheam and Mc Nicholas 

(2015) used the Gaussian mixture distribution for the heterogeneous data and 

check the diagnostic performance by the ROC Curve. He also discussed the EM 

algorithm, LABROC and Monte Carlo method to the comparison of Bi-normal 

Curve. Karim (2016) defined the scale of normal mixture distribution and also 

discussed properties of the inverted chi-square, Gamma, Exponential and 

Rayleigh distribution.  

Pundir and Azharuddin (2016) discussed the Normal mixture ROC (NMROC) 

Curve. They have studied the properties and AUC and of NMROC Curve. 

Confidence interval of AUC of NMROC Curve is also derived. Simulation 

studies are also discussed. Pundir and Azharuddin (2016) derived the constant 

shape Weibull mixture ROC (CSWMROC) model. They have also discussed the 

properties, AUC and optimal cut-off of value of CSWMROC. Estimates of AUC 

of CSWMROC Curve are derived by using the method of moments. Monte Carlo 

simulation studies are also discussed. When the heterogeneity is found in the 

population and subpopulation then the CSWMROC Curve is compared to Bi 

constant shape Weibull ROC Curve. Pundir and Azharuddin (2016) further 

discussed a comparative study on NMROC Curve by using the estimates of MLE 

via EM algorithm and Method of Moments. They have also checked the accuracy 

of NMROC Curve using CK-BB data. The accuracy is found by MLE via EM 

algorithm and Method of Moments, which is approximately equal for the small 

dataset. They have also observed if the data have heterogeneous then NMROC 

Curve gives better accuracy as compared to the Bi-normal ROC Curve. 

Azharuddin and Pundir (2017) also further studied CSWMROC Curve. They 

have derived the optimal cut-off value and the estimates of CSWMROC Curve. 

Simulation studies are also discussed by using the estimates of MLE via EM 

algorithm and Method of Moments. 

The whole paper is divided in 6 Sections. In Section 2, we proposed the Rayleigh 

Mixture ROC Curve.  The properties of RMROC Curve are also studied. The 

AUC of RMROC Curve and optimal cut-off value are also obtained. In Section 

3, we derived the estimates of RMROC Curve using Method of Moments 

(MOM) and Maximum Likelihood Method (MLE) via Expectation Maximization 

(EM) algorithm. In Section 4, the variance of Area under the Curve of RMROC 

Curve is also derived by delta method. Confidence Interval of AUC is also 

constructed. The test of significance of single AUC and two AUC’s are also 
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proposed. In Section 5 simulation studies is also done. We compared the 

estimates of RMROC Curve using MOM and MLE via EM algorithm. The 

accuracy, standard error and confidence interval are also discussed. The real life 

example is discussed in Section 5. In the Section 6, the conclusion is given. 

2. Rayleigh Mixture ROC Curve 

Let X be a random variable from healthy controls which follows Rayleigh 

Mixture distribution with parameters 10 , 20  and Y be a random variable from 

disease cases which follows Rayleigh Mixture distribution with parameters 11 , 

21 . The PDF and CDF of X and Y are given as 
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where, the means and variances of random variables X and Y are 
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The Rayleigh Mixture ROC Model is defined as 

          2
21

2
20

2
11

2
10

1 







txptxpty   (2.1-2.9) 
 

  



Evaluation of Biomarker in case of Heterogeneous… 

5 

where 

 

 

The first subscript, 1 shows 1
st 

subpopulation and 2 shows 2
nd 

subpopulation in 

complete population. The second subscript 1 denotes that the observation is 

coming from disease cases and 0 denotes that the observation is coming from 

healthy cases. 

Assumptions of ROC Curve 

i) The mean of disease cases should be greater than the mean of healthy cases 

for RMROC Curve. 

ii) 1011  
and 2021  

 

iii) 2010  
and 2111  

 

Properties of ROC Curve 

i) RMROC Curve remains unaltered if the test scores undergo a strictly 

increasing transformation. 

ii) RMROC Curve is monotonically increasing function. 

Proof: A function is said to be monotonically increasing function if first 

derivative of the function is greater than zero. The first derivative of (2.9) with 

respect to x(t) is given as    
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iii)  RMROC Curve is a concave. 

Proof: A function is said to be concave if its second derivative is less than zero. 

From (2.9), we have 
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 iv) The slope of the RMROC curve at the cut off value ‘t’ is obtained by the 

ratio of probability density function of disease cases to the probability 

density function of healthy controls. It is given as 
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The slope of the ROC Curve at a threshold value t gives the Likelihood Ratio, 

which tells us how much ROC Curve is nearer to FPR and TPR. 
v) The RMROC Curve is TNR asymmetric. 

Proof: Kullback-Leibler divergence describes the symmetric property of ROC 

Curve (Ref. Hughes and Bhattacharya (2013)). RMROC Curve is TNR 

asymmetric if the Kullback-Leibler divergence KL(p,q) is greater than KL(q,p) 

and which are given as follows 
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From (2.10) and (2.11), we can find that the KL(p,q) > KL(q,p) i.e., the RMROC 

Curve is TNR asymmetric. 

 

The optimal cut-off value gives maximum classification accuracy between the 

healthy individual and disease cases in medical diagnosis. The optimal cut-off 

value of RMROC Curve is given as 
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The AUC of RMROC Curve is defined as
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3. Estimates of the parameters of Rayleigh Mixture ROC Curve 

a) Method of Moments 

 

The r
th

 theoretical moment about origin of Rayleigh Mixture distribution is 

defined as 

 
2 2

' r r
r0 2 2 2 2

0 010 10 20 20

x x x x
p x exp dx 1 p x exp dx

2 2

 

 
   

                 

 

Equating r
th

 theoretical moment about origin to the corresponding r
th

 sample 

moment, we get 

 
r r

r r2 2
r0 10 20

r r
m p 2 1 1 p 2 1 .

2 2

   
            

     

 

Substituting r=1,2,3 in (5.2), we get first three sample moments of healthy 

controls as follows 
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On solving (3.3), (3.4) and (3.5) in MATHEMATICA software, one can get the 

estimates of p, 10  and 20 for healthy cases and similarly one can get the 

estimates for disease cases. 

b) Maximum Likelihood estimates using EM algorithm 

The EM algorithm is used when the likelihood is not found in closed form and it 

is discussed by Dempster et al. (1977) to estimate the two component normal 

mixture distribution by using EM algorithm. We use an iterative technique for 

estimating the parameters known as Expectation Maximization (EM) algorithm. 

Mostly, mixture distributions are not found in closed form.  

The likelihood function of Rayleigh Mixture density function from (2.1) is 

defined as 
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m n i10 10 20 20 i

i 1 i 10 i i i i
0 02 2 2 2

10 10 20 20

x x x x
exp exp

1 x2 2 xln L

p p 1 px x x x
p exp 1 p exp

2 2

 
 

    
      
               

    
                          

 

where 

 
 

     xfpxpf

xpf
xi

21

1

1
  and  

   

     
2

i
1 2

1 p f x
1 x .

pf x 1 p f x


  

 
 

 

 

2 2
i 10 i i

04 2 2 2m m10 10 10 i 10
i2 42 2i 1 i 110 10i i i i

0 02 2 2 2
10 10 20 20

x 2 x x
p exp

2 2 x 2ln L
x

2x x x x
p exp 1 p exp

2 2

 
 

     
    

               
                                   

 

 

  

2 2
i 20 i i

0 4 2 2 2m m20 20 20 i 20
i2 22 2i 1 i 120 20i i i i

0 02 2 2 2
10 10 20 20

x 2 x x
1 p exp

2 2 x 2ln L
1 x

2x x x x
p exp 1 p exp

2 2

 
 

     
     

               
                                    

 (3.8-3.10) 

After solving (3.8), (3.9) and (3.10), we get,
2

100
ˆ,ˆ p , and

2

20̂ .  

For healthy cases, the estimates are given as 

 
,ˆ 1

0
m

x

p

m

i

i






  

 x

xx

m

i

i

m

i

ii















1

12

10

2

̂ and

   

  
.

12

1

ˆ

1

12

20














m

i

i

m

i

ii

x

xx

    

Similarly, for disease cases the estimates are given as 
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 
,ˆ

1

1
n

y

p

n

j

i






  

 y

yy

n

j

j

n

j

jj















1

12

11

2

̂ and

   

  
.

12

1

ˆ

1

12

21














n

j

j

n

j

jj

y

yy

  (3.11-3.16)  

Substituting above estimates of parameters in (2.12), we can get the estimate of 

AUC. 

4. Variance of AUC of RMROC Curve 

The approximate variance of AUC of RMROC Curve using delta method is 

given as 

       

     

       



































































































































































2

20

2

212

20

2

2

21

22

20

2

2

20

22

21

2

2

21

2

2

10

2

112

10

1

2

11

12

10

2

2

10

12

11

2

2

11

1

21

,cov21

,cov2

1























AUCAUC
V

AUC
V

AUC
p

AUCAUC
V

AUC
V

AUC
p

AUCVpAUCpVAUCV

 
 (4.1) 

where 

   

2 2

101 1 11

2 2 2 2
2 2 2 2

11 11
11 10 11 10

,
AUC AUC 

    

 
  

  
 (4.2)

 

   

2 2

201 1 21

2 2 2 2
2 2 2 2

21 20
21 20 21 20

,
AUC AUC 

    

 
  

  
 (4.3)

 

 

Let 
10101010

...,,, 321 mxxxx  and 
11111111

...,,, 321 nyyyy are the random sample of sizes 

10m and 11n  from  ixf1  
and  

jyg1 . The likelihood function is given as follows 

   
10 1011 11

22

1 1 2 2 2 2
1 1 1 110 10 11 11

exp exp
2 2   

    
                

   
m mn n

j ji i

i j

i j i j

y yx x
L f x g y

   
  

Taking log on both sides, we get 

1110

10 10

22

12 21

10 10 11 112 2
1 110 11

ln ln ln ln lny
2 2

nm

jm ni
ji

i j

i j

yx

L m x n 
 



 

      


 

  

For finding        2 2 2 2

11 10 21 20
ˆ ˆ ˆ ˆ, ,V V V andV    and    2 2 2 2

11 10 21 20
ˆ ˆ ˆ ˆ, , ,Cov Cov    , we 

will use the Fisher Information matrix which is given as 
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 

2 2

4 2 2

10 10 11 11 12

2 2
21 22

2 2 4

11 10 11

ln ln

ln ln

L L
E E

a a
I

a aL L
E E

  


  

     
    

        
     

       
            

where, 10 11

11 224 4

10 11

,
m n

a a
 

   and 02112  aa . 

The  1I  is given as 

 
   

   

2 2 2

10 10 1122 121

2 2 2
21 1111 22 11 10 11

,1

,

V Cova a
I

a aa a Cov V

  


  


  
   

        

where 

   
44

2 2 1011

11 10

11 10

ˆ ˆ, ,V V
n m


   and    2 2 2 2

10 11 11 10, , 0Cov Cov     . (4.4)  

Similarly, we can obtain 

   
44

2 2 2021

21 20

21 20

ˆ ˆ, ,V V
n m


   and    2 2 2 2

20 21 21 20, , 0Cov Cov     . (4.5) 

Substituting (4.2), (4.3), (4.4) and (4.5) in (4.1), the variance of estimated AUC is 

given as   (4.6) 

where, 2010,mm
 

are the samples of healthy controls of Rayleigh mixture 

distribution and 2111,nn  are the samples of disease cases of Rayleigh mixture 

distribution. 

Now, we can find standard error, confidence interval and develop test of 

significance of AUC of RMROC curve using variance of estimated AUC.

 

 
   

 
   

 

2 2 2 2

2 4 2 44 2 4 2

10 10 20 2011 11 21 21

2 2 2 2
2 2 2 2 2 2 2 2

11 10 21 20
10 11 11 10 20 21 21 20

4 4

11 10 10 11

4
4 4

10 11
11 10

1V AUC p p
n m n m

m n
p

m n

      

       

 

 

          
          

                
                       

 
 

 
 

 

4 4

21 20 20 21

4
4 4

20 21
21 20

1
m n

p
m n

 

 

   
       

    
   
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i) For testing the AUC of RMROC Curve, 

00 : AUCAUCH 
vs 01 : AUCAUCH 

 

The test statistic is given as, 

 
 

 1,0~
ˆ

ˆ
N

CUAV

AUCCUAN
Z




 

where N = m + n  

ii) The 100(1- )% confidence interval of AUC of RMROC Curve is given as  

 
2

ˆˆ
ZCUASECUA 

 where   is the level of significance and 
2

Z  is the critical value of the 

confidence interval. 

iii) Consider the problem of testing for AUCs of mixture ROC Curve and 

univariate ROC Curve. The Hypotheses are given as follows: 

                            

                            

The test statistic is, 

 
   

 .1,0~
ˆˆ

ˆˆ

var

var N
CUAVCUAV

CUACUAN
Z

iateunimixture

iateunimixture




  (4.7)

 

5. Numerical Studies 

a) Simulation Studies 

In this section, we will discuss the simulation studies for checking the behavior 

of RMROC Curve. The random samples are generated from two component 

Rayleigh Mixture distribution. Let us fix the weights for healthy controls and 

disease cases as p = 5.010  pp . The parameters of healthy controls are 

10 3  , 20 2   and the parameters of disease cases are  20,18,14,11,811   

and  17,15,12,9,621  .  

The sample sizes are taken as 300) 200, 100, 50, 40, 30, 20, (10,== nm . The 

level of significance (α) is fixed as 0.05. The studies are done by using the 

MATHEMATICA Software and the commands are given in Appendix (a). 
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Tables 5.1 and 5.2 show the estimates of parameters of RMROC Curve by MLE 

(EM) algorithm and MOM for different sample sizes. The biases of parameters 

are also shown in bracket. 

Table 5.1: Estimates and bias of parameters of RMROC Curve using MLE (EM) 

algorithm. 

N 0p̂  10̂  20̂  1p̂  11̂  21̂  

10 
0.551 

(0.5) 

2.839 

(-0.161) 

1.435 

(-0565) 

0.34 

(-0.16) 

9.872 

(1.872) 

6.012 

(0.012) 

20 
0.320 

(-0.18) 

3.312 

(0.371) 

1.677 

(-0.323) 

0..32 

(-0.18) 

10.942 

(-0.058) 

8.139 

(-0.861) 

30 
0.453 

(-0.05) 

2.740 

(-0.26) 

1.871 

(-0.129) 

0.739 

(0.23) 

14.171 

(0.171) 

10.274 

(-1.726) 

40 
0.562 

(0.06) 

2.940 

(-0.06) 

1.532 

(-0.468) 

0.496 

(-0.01) 

18.340 

(0.34) 

12.790 

(-2.21) 

50 
0.640 

(0.14) 

2.959 

(-0.041) 

1.560 

(-0.44) 

0.51 

(0.01) 

22.219 

(2.919) 

16.103 

(-0.897) 

100 
0.718 

(0.21) 

2.823 

(-0.177) 

1.688 

(-0.312) 

0.839 

(0.33) 

10.555 

(2.555) 

6.520 

(0.52) 

200 
0.035 

(0.03) 

4.286 

(1.286) 

2.297 

(0.297) 

0.565 

(0.065) 

10.855 

(-0.145) 

7.779 

(-1.221) 

300 
0.827 

(0.32) 

2.718 

(-0.282) 

1.374 

(-0.626) 

0.491 

(-0.009) 

15.193 

(1.193) 

10.753 

(-1.247) 

 

Table 5.2: Estimates and bias of parameters of RMROC Curve using MOM. 

 

N 0p̂  10̂  20̂  1p̂  11̂  21̂  

10 
0.806 

(0.31) 

3.643 

(0.643) 

1.348 

(-0.652) 

0.83 

(0.33) 

6.446 

(-1.554) 

3.618 

(-2.382) 

20 
0.800 

(0.30) 

2.908 

(-0.092) 

1.186 

(-0.814) 

0.747 

(0.24) 

11.721 

(0.721) 

4.393 

(-4.607) 

30 
0.184 

(-0.516) 

3.832 

(0.832) 

2.091 

(0.091) 

0.11 

(-0.59) 

16.705 

(2.705) 

12.559 

(0.559) 

  



Evaluation of Biomarker in case of Heterogeneous… 

13 

40 
0.30 

(-0.2) 

2.686 

(-0.81) 

2.025 

(0.025) 

0.42 

(-0.08) 

16.786 

(-1.214) 

11.782 

(-3.218) 

50 
0.36 

(-0.14) 

2.858 

(-0.142) 

1.899 

(-0.142) 

0.52 

(0.02) 

17.428 

(-2.572) 

16.616 

(-0.384) 

100 
0.875 

(0.37) 

2.680 

(-0.320) 

1.373 

(-0.627) 

0.778 

(0.278) 

10.667 

(2.667) 

7.293 

(1.293) 

200 
0.006 

(-0.49) 

5.872 

(2.872) 

2.350 

(0.35) 

0.256 

(-0.244) 

11.781 

(0.781) 

8.781 

(-0.219) 

300 
0.930 

(0.43) 

2.621 

(-0.379) 

0.834 

(-1.166) 

0.719 

(0.219) 

14.472 

(0.472) 

13.821 

(1.821) 
 

From Tables 5.1 and 5.2, it is observed that as the sample size increases, the 

estimates become closer to the parameters of RMROC Curve. The bias of 

parameter also decreases with increase in sample size. On comparing both 

estimates, it is found that as the sample size increases, the estimates by MLE 

(EM) algorithm are more efficient than the estimates using MOM.  

For testing the AUC of RMROC Curve for given different values of parameters, 

the hypotheses are given below: 

88.0:88.0: 10  AUCHvsAUCH   

94.0:94.0: 10  AUCHvsAUCH       

96.0:96.0: 10  AUCHvsAUCH        

97.0:97.0: 10  AUCHvsAUCH        

98.0:98.0: 10  AUCHvsAUCH                 (5.1-5.5)  

Using (4.7), one can calculate the values of Z-statistic which are given in Tables 

5.3 and 5.4.  

Table 5.3 shows that the estimate of AUC, variance, SE, MSE and CI of AUC by 

MLE (EM) algorithm using estimates of parameters from Table 5.1. The 

estimates of AUC, variance, SE, MSE of AUC by MOM are also shown in Table 

5.4 using estimates of parameters from Table 5.2. The bias of AUC is also shown 

in bracket. 
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Table 5.3: CUA ˆ ,  CUAV ˆ ,  CUASE ˆ ,  CUAMSE ˆ
, 

CI(AUC) and Z-values of 

RMROC Curve using MLE (EM) algorithm. 

 

N 

 

CUA ˆ  

 

 CUAV ˆ

 

 

 CUASE ˆ

 

 

 CUAMSE ˆ

 

 

CI(AUC) 

 

Z-values 

10 
0.938 

(0.055) 
0.000681 0.0261 0.0037 

[0.887, 

0.989] 
1.902 

20 
0.945 

(0.004) 
0.000292 0.0171 0.0003 

[0.911, 

0.978] 
0.183 

30 
0.965 

(0.001) 
0.000076 0.0087 0.0000 

[0.947, 

0.982] 
0.053 

40 
0.980 

(0.003) 
0.000019 0.0044 0.0000 

[0.971, 

0.989] 
0.510 

50 
0.987 

(0.005) 
0.000006 0.0026 0.0000 

[0.981, 

0.992] 
1.857 

100 
0.934 

(0.054) 
0.000075 0.0086 0.0029 

[0.917, 

0.951] 
88.601 

200 
0.916 

(-0.024) 
0.000059 0.0076 0.0006 

[0.901, 

0.931] 
-60.301 

300 
0.971 

(0.011) 
0.000052 0.0022 0.0001 

[0.967, 

0.976] 
123.525 

 
 

Table 5.4: CUA ˆ ,  CUAV ˆ ,  CUASE ˆ ,  CUAMSE ˆ
, 

CI(AUC) and Z-values of 

RMROC Curve using MOM. 
 

N CUA ˆ   CUAV ˆ   CUASE ˆ  

 

 CUAMSE ˆ

 

CI(AUC) 
Z-

values 

10 
0.778 

(-0.105) 
0.0059 0.0773 0.0169 

[0.626, 

0.929] 
-1.423 

20 
0.939 

(-0.002) 
0.0003 0.0180 0.0003 

[0.904, 

0.974] 
-0.111 

30 
0.961 

(-0.003) 
0.00009 0.0099 0.0000 

[0.942, 

0.980] 
-0.33 
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40 
0.972 

(-0.005) 
0.00003 0.0059 0.0000 

[0.961, 

0.984] 
-0.847 

50 
0.980 

(-0.002) 
0.00001 0.0040 0.0000 

[0.972, 

0.988] 
-0.5 

100 
0.943 

(0.063) 
0.000057 0.0075 0.0040 

[0.928, 

0.958] 
119.088 

200 
0.932 

(-0.008) 
0.000040 0.0063 0.0001 

[0.919, 

0.944] 
-24.080 

300 
0.970 

(0.01) 
0.000005 0.0024 0.0001 

[0.965, 

0.974] 
103.14 

 

From Tables 5.3 and 5.4, we observe that the estimates of AUC are closer to the 

true AUC. The variance, SE and MSE of AUC decreases with increase in sample 

size. It is also observed that maximum likelihood estimates are more efficient as 

compared to MOM. The MLE via EM algorithm gives more accuracy and less 

bias than MOM. We found that all values of Z-statistic lie between -1.96 and 

1.96. Hence, all the null hypotheses are accepted. 

The RMROC Curves for different sample sizes are shown in Fig. 5.1.  

The Figure 5.1 depict that RMROC Curve gives maximum accuracy with 

increase in difference in scale parameters of disease cases.  

b) Real Life Example 

Zhou et al.  (2002) has published head trauma data. The biomarker is CK-BB on 

the basis of which one can decide about the status of disease of a person. It 

consists of 57 subjects out of which 19 individuals are with good outcome 

(healthy) and 38 individuals are with bad outcome (disease). The histogram of 

CK-BB data for bad outcome and good outcome are shown below: 

The above Fig. 5.2 histograms are asymmetric and right skewed. Tables 5.5 and 

5.6, show the goodness of fit tests for poor outcome (disease cases) and good 

outcome (healthy controls). In these Tables, the test Statistics and p-values are 

given.  
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Table 5.5: Goodness of fit tests of Rayleigh Mixture distribution for poor 

outcome (disease individual) of head trauma data. 

Test Statistics p-Value 

Anderson-Darling 0.9477 0.3846 

Cramer-Von Mises 0.1516 0.3846 

Kuiper 0.1974 0.4359 

Pearson Chi Square 8.8947 0.3512 

Watson U Square 0.0795 0.4061 

Kolmogorov Smirnov 0.1390 0.4163 

 

Table 5.6: Goodness of fit tests of Rayleigh Mixture distribution for good 

outcome (healthy individual) of head trauma data. 

 

Test Statistics p-Value 

Anderson-Darling 0.8602 0.4368 

Cramer-Von Mises 0.1659 0.3444 

Kuiper 0.2670 0.4848 

Watson U Square 0.0893 0.3364 

Kolmogorov Smirnov 0.1931 0.4239 

 

From Tables 5.5 and 5.6, we observe that all p-values are more than  , hence 

Rayleigh Mixture distribution fits well to the head trauma data. It is also obvious 

from PP-Plot in Fig. 5.3.   

In Table 5.7, the estimates of AUC, using MLE (EM) algorithm and MOM for 

the head trauma data are given. 

Table 5.7: Estimates of parameters of RMROC Curve for head trauma data. 

Methods 0p̂  10̂  20̂  
1p̂  11̂  21̂  

MLE (EM) 0.73 120.88 21.87 0.48 566.46 160.86 

MOM 0.76 118.75 11.87 0.46 580.39 158.98 
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Table 5.7 show that the estimates of parameters of RMROC Curve using MLE 

(EM) algorithm and MOM for head trauma data. The estimates are obtained by 

using the MATHEMATICA Software. The program is given in Appendix (a). 

Using Table 5.7, the Table 5.8 shows that the estimates of AUC, variance, 

standard error and confidence interval of AUC, Sensitivity, and Specificity using 

MLE (EM) algorithm and MOM for the head trauma data are given. 

Table 5.8: Estimates of AUC, Variance, SE, Sensitivity, Specificity, cut-off 

value (t) and Confidence Interval of AUC of RMROC Curve for head trauma 

data. 

Methods 

 

CUA ˆ
 

 

 CUAV ˆ

 

 

 CUASE ˆ

 

Sen. Spe. (t) 

 

 CUACI ˆ

 

MLE 

(EM) 
0.96 0.00007 0.008 0.945 0.855 165.89 [0.98, 0.95] 

MOM 0.97 0.00005 0.007 0.963 0.817 160.761 [0.99, 0.96] 

 

From Table 5.8, we observe that the estimates by MLE (EM) algorithm of AUC 

are almost same as estimates by MOM.  

Now, we want to compare Bi-Rayleigh ROC Curve to RMROC Curve.  The 

AUC of Bi-Rayleigh ROC Curve is found as 93% with standard error of 0.018. 

The Confidence Interval of AUC of Bi-Rayleigh ROC Curve is [0.894, 0.965]. 

The Sensitivity and Specificity of CK-BB by Bi-Rayleigh ROC Curve are 88% 

and 80% respectively at threshold 169.5 U/L (Ref. Pundir and Amala (2012)). 

The AUC of RMROC Curve is found as 96% with standard error 0.008. The 

confidence interval of AUC is [0.95, 0.98]. The Sensitivity and Specificity of 

RMROC Curve are 94.5% and 85.5% at the optimal threshold value is 165.89 

U/L.  

For testing the significance of AUC of Rayleigh Mixture  RMAUC and AUC of 

Bi-Rayleigh  BRAUC  ROC Curves, the hypotheses are BRRM AUCAUCH :0

vs 
BRRM AUCAUCH :1

. Using (4.15), we got the value of Z-statistic as 1.677, 

which is more than 1.645. Therefore, it is found that AUC of RMROC Curve is 

more than AUC of Bi-Rayleigh ROC Curve. Hence, RMROC Curve gives better 

accuracy than Bi-Rayleigh ROC Curve when the heterogeneity is found in data.  

RMROC Curve and Bi-Rayleigh ROC Curve for head trauma data are shown in 

Fig. 5.4. It shows that the RMROC Curve is closer to the proper ROC Curve for 
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head trauma data and gives maximum accuracy as compared to Bi-Rayleigh 

ROC curve.  

6. Conclusion 

In real life situations, when a diseased population has a finite number of 

categories such that the test scores belongs to one of these categories then finite 

mixture model is the most appropriate model for such type of application. 

Similarly, if a healthy population also consists of finite number of categories and 

the test scores belongs to one of these categories then we can apply mixture 

model. Hence, mixture models are the best models for the population consisting 

of many categories due to which heterogeneity and complexity comes in the 

population. ROC Curve is used to measure the power or ability of the biomarker 

for diagnosis of a disease. Mixture ROC models are helpful for datasets where 

population has higher variability than univariate ROC models. In this paper, we 

have found the role of Mixture distribution in the context of ROC Curve which 

improves the accuracy of the diagnostic tests. The purpose of this research work 

is to measure the ability of a biomarker by using the proposed Mixture ROC 

models classifying the individuals as healthy or disease with high accuracy. 

In this paper, we have proposed RMROC model. The assumptions and properties 

of RMROC Curve are derived. The RMROC Curve is monotonically increasing, 

concave and TNR asymmetric.  We have obtained AUC and optimal cut-off 

value of RMROC Curve and also checked the identifiability condition of 

Rayleigh mixture distribution. The estimates of the parameters of RMROC by 

MLE via EM algorithm and MOM are derived. The approximate variance and 

95% confidence interval of AUC of RMROC Curve are also obtained. Testing of 

AUC of RMROC and comparison of two AUCs is also proposed. We have done 

the simulation study and also validate the RMROC model by the head trauma 

data. The bias, variance, standard error and MSE of AUC decrease with increase 

in sample size. MLE via EM algorithm gives closer estimates as compared to 

MOM. Therefore, it is found that estimates of RMROC Curve by MLE via EM 

algorithm are more efficient than MOM. From Z-values, it is obvious that 

estimated AUC is closer to the actual AUC.  

Rayleigh Mixture distribution fits well to the head trauma data. The accuracy of 

CK-BB using RMROC Curve is found to be 96% and 97% by MLE via EM 

algorithm and MOM with standard errors 0.008 and 0.007 at optimal cut-off 

values 165.89 U/L and 160.76U/L whereas the accuracy of CK-BB using Bi-
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Rayleigh ROC Curve is 93% with standard error of AUC as 0.018 at optimal cut-

off value 169.5 U/L. RMROC Curve gives maximum accuracy as compared to 

Bi-Rayleigh ROC Curve in case of head trauma data when the heterogeneity is 

found. 
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Fig. 2.1: Rayleigh Mixture distribution with parameters p=0.5, 121   
and 

102  . 

 

Fig. 1 

Fig. 5.1: RMROC Curve for different sample sizes with different parameters. 
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Fig. 5.2: Histogram of poor outcome (disease) and good outcome (healthy). 

 

Fig. 2 

Fig. 5.3: PP-Plot for poor outcome and good outcome of head trauma data. 
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Fig. 5.4: RMROC and BRROC Curves for head trauma data. 

 

 
 

 

 

Appendix 

 

Programs 

(a) MATHEMATICA Command  

Dist=MixtureDistribution[{p,1-

p},{RayleighDistribution[],RayleighDistribution[]}] 

Data=RandomVariate[Dist,sample size] 

FindDistributionParameters[Data,MixtureDistribution[{p,1p},{RayleighDistribut

ion[],RayleighDistribution[]}],ParameterEstimators->”MaximumLikelihood”] 

FindDistributionParameters[Data,MixtureDistribution[{p,1-

p},{RayleighDistribution[],RayleighDistribution[]}],ParameterEstimators>”Meth

odOfMoments”] 

Hist=Histogram[data,Automatic,”ProbabilityDensity”] 

Plot=Plot[PDF[MixtureDistribution[{p,1-

p},{RayleighDistribution[],RayleighDistribution[]}],x],{x,range}] 

Show[Hist,Plot] 

DistributionFitTest[data,densityfunction,{“TestDataTable”,All}] 

0 

0.5 

1 

0 0.5 1 

T
ru

e 
P

o
si

ti
v
e 

R
a

te
 

False Positive Rate 

RMROC 
Curve 

BRROC 
Curve 



Sudesh Pundir and Azhar Uddin 

24 

 

ProbabilityPlot[data,densityfunction] 

For MOM estimates, the following command is used 

Solve

       




















 213

3

2

3

12

2

2

2

1121 ,,,13
2

3,122,
2

1
2










 pmppmppmpp  

(b) R-Codes 

data1=c(140,1087,230,183,1256,700,16,800,253,740,126,153,283,90,303,193,76

,1370,543,913,509,576,671,80,490,156,356,350,323,1560,120,216,443,523,76,3

03,353,206) 

data2=c(136,286,281,23,200,146,220,96,100,60,17,27,126,100,253,70,40,6,46) 

par(mfrow=c(1,2)) 

hist(data1,main="") 

hist(data2,main="") 

hist(data1,xlim=c(5,1500),ylim=c(0,15),breaks=10,main="",xlab="number") 


