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ABSTRACT 

This paper focuses on the estimation problem of population mean by using 

auxiliary information. By using auxiliary information on first and second 

moments about zero, a new efficient generalized class of estimators for 

estimating the finite population mean under two-phase or double sampling 

scheme have been proposed. The properties of the suggested class of 

estimators in terms of bias and mean squared error have been studied. The 

efficiency comparisons have been carried out with respect to the sample 

mean estimator to establish its superiority. An empirical study is also 

included as an illustration to justify the results through data. 

1. Introduction 

The use of auxiliary information in sample surveys is proved to be of immense 

importance and therefore statisticians very often make use of the information 

available on an auxiliary variable with the variable under study for improving the 

efficiency of an estimator. For better understanding one may see Cochran (1977), 

Murthy (1967) and Sukhatme et al. (1984).  

It is well known fact that the auxiliary information in sample surveys results in 

substantial improvement in the precision of the estimators of the population 

parameters, and if, the parameters of the auxiliary variables are not known in 

advance, double or two-phase sampling technique is used. The prime advantage 
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of double or two-phase sampling scheme is that it is more flexible and 

considerably cost effective. In double sampling or two-phase sampling technique, 

we first take a preliminary large sample of size n (called first phase sample) 

from a population of size N and then a sub-sample of size n (called second phase 

sample) is drawn from the first phase sample of size n  using simple random 

sampling without replacement at both the phases. At first phase sample of size n, 

only the auxiliary variable X  be observed but at the second phase sample of size 

n, the study variable Y and the auxiliary variable X  both are observed. 
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With the first two moments about zero 
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generalized class of double sampling estimators of the population mean is 
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(iii) The second  order partial derivatives are 
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2. Bias and Mean Squared Error of the Proposed Estimator  

In order to obtain bias and mean square error of the proposed estimator, let us 

denote by 

  01 eYy   

  11 eXx   

 11 eXx 
 

 
 21 eXx   

  21 eXx
        (2.1)
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So that ignoring finite population correction for simplicity we have 
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Expanding  21 , uug  about the point  1,1T  in the third order Taylor’s 

series, we have to the first degree of approximation 
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Taking expectation on both the sides of equation (2.5), the bias of gy  up to terms 

of order  nO 1
 
is given by  
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Now squaring both sides of equation (2.5) and then taking expectation, the mean 

squared error of gy  up to terms of order  nO 1  is given by 
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which attains the minimum for the optimum values 
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Substituting the values of 1g and 2g given by equation (2.8) and equation (2.9) in 

equation (2.7), the minimum mean squared error of gy  is given by 
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3. Efficiency Comparison 

The general estimator of Mean in case of SRSWOR is yywor 
ˆ with 

   
n

yMSE 20ˆ 
      (3.1) 

It is clear from equations (2.10) and (3.1) that the proposed generalized 

class of estimators is more efficient than the estimator worŷ based on 

simple random sampling when no auxiliary information is used.  

4. Empirical Study 

 

To illustrate the performance of the proposed estimator, let us consider the 

following data.  

Population I: Cochran (1977, Page Number- 181) 

y  : Paralytic Polio Cases ‘placebo’ group 

x  : Paralytic Polio Cases in not inoculated group 

02 = 71.8650173, 20 = 9.889273356, 11 = 19.4349481, 12 = 346.3174191,  
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03 = 1453.077703, 40 = 424.1846721, 21 = 94.21286383, 22 = 3029.312542,  

30 = 47.34479951, 04 = 46132.5679, y = 2.588235294, x = 8.370588235,  

xS = 8.477323711, yS = 3.144721507,  =0.729025009,  y2 = 4.337367369, 

 x2 = 8.932490454, XC = 1.012751251, YC =1.215006037, = 0.270436839,  

n = 34, n=50 (say). 

 woryMSE ˆ = 0.290860981  and   mingyMSE = 0.245359035. 

PRE of the proposed estimator gy over worŷ = 118.5450461. 

 

Population II: Mukhopadhyay (2012, Page Number - 104) 

y  : Quality of raw materials (in lakhs of bales)  

x  : Number of labourers (in thousands) 

02 = 9704.4475, 20 = 90.95, 11 = 612.725, 12 = 93756.3475,  

03 =  988621.5173, 40 = 35456.4125, 21 = 11087.635, 22 = 2893630.349, 

30 = 1058.55, 04 = 341222548.2, y = 41.5, x = 441.95, xS = 98.51115419, 

yS = 9.536770942,  =0.652197067,  y2 = 4.286367314,  

 x2 = 3.623231573, XC = 0.22290113, YC =0.229801709, 

 =0.063138576, n  = 20, n=35 (say). 

 woryMSE ˆ = 4.5475  and
  

 mingyMSE = 3.941933079. 

PRE of the proposed estimator gy over worŷ = 115.3621817. 

 

Population III: Murthy (1967, Page Number - 398) 

y  : Number of absentees  

x  : Number of workers 

02 = 1299.318551, 20 = 42.13412655, 11 = 154.6041103, 12 = 5086.694392,  

03 = 32025.12931, 40 = 11608.18508, 21 = 1328.325745, 22 = 148328.4069,  
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30 = 425.9735118, 04 = 4409987.245, y = 9.651162791, x = 79.46511628,  

xS = 36.04606151, yS = 6.491080538,  = 0.660763765,  y2 = 6.53877409,  

 x2 = 2.612197776, XC = 0.453608617, XC = 0.672569791, 

 = 0.118988612, n = 43, n=50 (say). 

 woryMSE ˆ = 0.979863408 and 
 

 mingyMSE = 0.623109375. 

PRE of the proposed estimator gy over 
worŷ = 106.1481375. 

 

Population IV: Singh and Chaudhary (1997, Page Number - 176) 

y  :  Total number of guava trees 

x  : Area under guava orchard (in acres) 

02 = 12.50056686, 20 = 187123.9172, 11 = 1377.39858, 12 = 4835.465464,  

03 = 37.09863123, 40 = 1.48935E+11, 21 = 712662.4414,  

22 = 8747904.451, 30 = 100476814.5, 04 = 540.1635491, y = 746.9230769, 

x = 5.661538462, xS = 3.535614072, yS = 432.5782209,  = 0.900596235, 

 y2 = 4.253426603,  x2 = 3.456733187, XC = 0.624497051,  

YC = 0.579146949,
 
= 110.1868895, n = 13, n=30 (say). 

 woryMSE ˆ = 14394.14747 and 
 

 mingyMSE = 7689.477763. 

PRE of the proposed estimator gy over worŷ = 187.1927837. 

 

Population V: Singh and Chaudhary (1997, Page Number: 154-155) 

y  :  Number of milch animals in survey 

x  : Number of milch animals in census 

 02 = 431.5847751, 20 = 270.9134948, 11 = 247.3944637,  

12 = 3119.839406, 03 = 5789.778954, 40 = 154027.4827, 21 = 

2422.297374, 22 = 210594.3138, 30 = 2273.46265, 04 = 508642.4447, y = 
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1133.294118, x = 1140.058824, xS = 20.77461853, yS = 16.45945002,  = 

0.723505104,  

 y2 = 2.098635139,  x2 = 2.730740091, XC = 0.018222409,  

YC = 0.014523547, = 0.573223334, n = 17, n=30 (say). 

 woryMSE ˆ = 15.93609 and
  

 mingyMSE = 12.31714015. 

PRE of the proposed estimator gy over worŷ = 129.3813964. 

5. Conclusions 

(i) Any estimator belonging to the generalized class of estimators 

represented by gy  cannot have mean square error less than the 
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(ii) From equation (2.8) and equation (2.9), the mean squared error of the 

estimator gy  i.e. MSE  
gy

 
is minimized for the optimum values 
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g
X

  (5.2) 

and  212

1
 


 XXg      (5.3) 

where   1112

22

1 2  XXCX  ,  02032 2  XYCC XY  ,  

 112

3

02    , 2

02

04
2




    and  3

02

2

03
1




  .  

The optimum values involving some unknown parameters may not be known in   

advance for practical purposes and hence the alternative is to replace the 

unknown parameters of the optimum values by their unbiased estimators giving a 

subclass of estimators depending upon estimated optimum values. 
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