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ABSTRACT 

In this paper, two classes of uniform designs for mixture experiments 

based on F-squares are presented. The properties of these classes of 

designs using different mixture models are investigated. The two classes of 

designs are (i) mixture designs constructed using uniform designs based on 

cyclic F-squares for two designs with different runs and (ii) mixture 

designs constructed by projecting the uniform designs based on good 

lattice point method based on two designs with different runs. Design 

efficiencies of the most uniform designs of the two classes of designs are 

also computed and compared. 

 

1. Introduction 

In the general mixture experimental setup, the usual constraints on the 

component proportions are that they are non-negative and should sum to unity. 

As a result, the factor space reduces to a regular (q − 1) dimensional simplex 

  qixxxxxxS i
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Scheffé (1958) was the first author to introduce models and designs for 

experiments with mixtures. These extraneous factors do not form any portion of 

the mixture but their different levels could significantly affect the blending 

properties of the ingredients. For example, the driving speed and automobile size 

may affect the blending behaviours of fuels being tested to compare the average 

mileage of the fuels individually as well as when blended together. Scheffé 

(1963) introduced the problem of mixture experiments involving process 

variables. 
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In many situations, there may be additional constraints on some or all of the 

factors. For instance, the factors may lie within the lower (Li) and upper (Ui) 

bounds 

0 ≤ Li≤ xi ≤ Ui ≤ 1,  i = 1, 2, …,n   (1.2) 

In such cases, the experimental region is a part of the Simplex Sq-1. For 

exploring the restricted region, Mclean and Anderson (1966) have developed 

extreme vertices designs (EVD) which satisfy both the constraints (1.1) and 

(1.2). Saxena and Nigam (1977) gave a transformation that provides designs 

constructed through symmetric simplex designs. Cornell (2002) has given an 

excellent review on the problem of experiments with mixtures. Various model 

forms for mixture experiments are suggested in literature. The following are the 

models considered by us in this study: 

Model I: Scheffé’s (1958) quadratic model 
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Model II: Scheffé’s (1958) special cubic model 
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Model III: Scheffé’s (1958) full cubic model 
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 Model IV: Darroch and Waller’s (1985) additive quadratic model 

 



q

i

iiii

q

i

ii xxxYE
11

)1()( 

   

 (1.6) 

Model Hi: Becker’s (1968) homogeneous models of degree one 

 

)...,,,(...),()(
...

...

1 21

21 n

n

n iji

iii

iii

ji

jiij

q

i

ii xxxfxxfxYE 


 

 

(1.7) 
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   for Model H3 

 and 2 ≤ n ≤ q 

In  H2 if any denominator is zero, the value of corresponding term is taken to be 

zero. Models I, II and III are the most commonly used models in mixture 

experiments.  Model  IV  is additive in mixture components and is suitable for the 

design of industrial or agricultural products where mixture components have 

additive effects on the response function. The models introduced by Becker 

(1968) are homogeneous models of degree one and are applied in different 

scientific areas. 

Aggarwal et al. (2009) have studied mixture designs in orthogonal blocks using 

F-squares. Husain and Sharma (2015) obtained optimal orthogonal designs in 

two blocks based on F-squares for mixture inverse model in four components. In 

this paper, we have obtained mixture designs in three and four components by 

projecting the two families of designs based on good lattice point method. The 

uniformity measure for these designs is also calculated and tabulated. The D-, A- 

and G-efficiencies of these designs are also compared. We have also constructed 

designs for the restricted exploration of mixtures, using the transformation given 

by Saxena and Nigam (1977).The method has been illustrated with the help of 

examples. 

2. F-Squares 

Laywine  (1989) obtained F-squares by making substitutions based on numbers 

for latin squares. F-squares and orthogonal F-squares are a generalization of latin 

squares and orthogonal latin squares, respectively. Hedayat and Seiden (1970) 

gave the following definition: 

Definition 1.1:  Let A = [aij] be an n × n matrix and let  = (c1, c2, …,cm) be the 

ordered set of distinct elements of A. In addition, suppose that for each k = 1, 2, 

...,m, ck  appears precisely k  times (k 1) in each row and in each column of A. 

Then, A will be called a frequency square or more concisely, an F-square of 

order n on  with frequency vector (1, 2, …,m) and is denoted by F(n; 1, 2, 

…, m).   

Laywine (1989) studied F-squares by making substitutions on the symbols of 

latin squares. For example, consider the following latin square of order 4. By 

substituting the symbol d = a in the latin square, F (4; 2, 1, 1) defined on  = (a, 

b, c) is obtained. Aggrawal et al. (2009) denoted this F-square as FSI(4), where 4 

in the parenthesis denotes the number of components. 

  

http://www.inderscience.com/info/inarticle.php?artid=72794
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Latin Square of 

order 4 

FSI(4) 

Square number 1 

FSI(4) 

Square number 2 

FSI(4) 

Square number 3 

a b c d a B c a a c a b a a b c 

b a d c b A a c b a c a b c a a 

c d a b c A a b c a b a c b a a 

d c b a a C b a a b a c a a c b 

 

FSI(4) generates two distinct F-squares, namely Square number 2 and Square 

number 3 via permutations of the last three columns. Aggrawal et al. (2009) 

identified F-squares by simply writing down the first row of the square and 

represented Square number 2 by writing its first row as a c a b. Aggrawal et al. 

(2009) gave the following definitions. 

Definition 1.2:  An F-square with the first row and first column in natural order 

is called a standard F-square where by natural order we mean to imply that each 

element is followed by the same element (if it assumes an equal proportion) or 

the next element cyclically. For example, for four components if d = a, then   = 

(a, b, c), the order could either be a, a, b, c or a, b, c, a.  

Definition 1.3: Two F-squares are equivalent if one can be derived from the 

other by permutations of rows and/or permutations of columns and/or 

permutations of elements. 

Definition 1.4: Two F-squares are conjugates if the rows of one are the columns 

of the other. 

3. Uniform Designs and Uniformity Measures 

Uniformity is an important concept in uniform designs. Fang and Wang (1994) 

have described uniform designs (UD) in which the points are scattered uniformly 

over the experimental domain. This is based on cyclic F-squares. The UD 

generated by them have smaller discrepancies than those based on the good 

lattice point method. 

The rationale for construction of good UD is based on the following Koksma-

Hlawka inequality  

                           

where V(h) is a measure of variation of h and      is the discrepancy of   

which is a measure of the uniformity of    

Warnock (1972) gave the following analytical expression for calculating L2-

discrepancy. 
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where, P = {x1, x2, …, xn} is a set of n points in C
s
 = [0,1]

s
. 

Hickernell (1998) gave three modified L2-discrepancies: the symmetric L2-

discrepancy (SD2), the centered L2-discrepancy (CD2) and modified L2-

discrepancy (MD2). These uniformity measures are described in Fang et al. 

(2001).  

Hickernell (1998) gave an analytical expression for the centered L2-discrepancy 
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The centered L2-discrepancy (CD2) considers the uniformity of P not only over 

C
s
= [0, 1]

s  
but also of all the projected uniformity of P over C

u
 where u is a non-

empty subset of the set of coordinate indices X = {1, 2, …, q}. 

In this paper, we have used the centered L2-discrepancy (CD2) as a measure of 

uniformity and the minimum value of CD2is desirable for F-square based 

uniform designs. 

4. Design Efficiencies Based on Optimality Criteria 

Design optimality criteria are often used to evaluate the proposed experimental 

design for a particular experiment of interest. The following three are the most 

popular design optimality criteria available in the literature where X denotes the 

extended design matrix. 

 D-criterion: maximize the determinant of XʹX 

 A-criterion: minimize the trace of (XʹX)
-1

 

 G-criterion: minimize the maximum of the prediction variance over a 

specified set of design points. 

In order to compare the different designs efficiencies, we use the following most 

commonly used design optimality measures. 
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where, 

n = number of design points in the design 

p = number of parameters in the model  

d = max {ν = X(XʹX)
-1

Xʹ} over a specified set of design points (the row  

vectors) x in X. 

In this paper, the efficiencies given is (4.1) are generated using Matlab software 

and are denoted here simply by D, A and G for the sake of notational 

convenience. The maximum value of D, A and minimum value of G are 

desirable. 

 

5. Projection Designs 

Prescott (2000) and Box and Hau (2001) have discussed the construction of 

projection designs for the cases when the design variables are subject to linear 

constraints. A design satisfying linear constraints has been obtained by projecting 

unconstrained design onto the constrained space. If q operational factors x = {xi}, 

where i = 1, 2, …,q, are subject to m constraints so that 

Cx = c        (5.1) 

where, C  is an m × q matrix and c is an m × 1 column vector. Suppose xo is the 

chosen origin for the levels of the experimental design then Cxo = c. Let the 

region of interest be the neighborhood xjo ± rj around xo where rj’s are some 

positive numbers, then the coded variables 
j

joj

j
ar

xx 
  satisfy the constraints 

 Ax = 0        (5.2) 

where, ξ is a q × 1 vector of coded variables ξi’s, A = (aij) is an m × q matrix of 

constraints such that  aij = rjcij and 0 is an m × 1 vector of 0’s and a is the number 

to be determined. 

Let the n × q matrix  Dz be that of some unconstrained generating design, and Dξ 

be that of the corresponding constrained design obtained through projection to 

satisfy (5.2) so that 

 Dξ = DzP       (5.3) 

where, P is the q × q idempotent projection matrix satisfying  

 P = I – A
T
(AA

T
)

-1
A      (5.4) 
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Then, as required 

 DξA
T
 = DzP A

T
= 0      (5.5) 

and the levels of the design DX  may be obtained from 

 jojjj xarx         (5.6) 

where, ‘a’ is the number such that all the entries of aDξ  are between -1 and 1. 

6. Unconstrained Mixture Experiments 

Aggarwal and Singh (2008) suggested a method to construct latin square based 

design of n runs for mixture of q components. We describe the following method 

to construct mixture designs through cyclic F-squares. UF-type designs may be 

obtained by selecting s linearly independent columns of cyclic F-squares (Husain 

and Sharma (2016)). 

Method 

To construct F-squares based n run mixture design in q components for UF-type 

designs. 

Step 1: Choose a UF-type design UF(n;q
n
) and any s(≤n) columns of an F square 

form a UF-type design UF(n;q
s
). 

Step 2: For a given n, there are n! left cyclic F-squares. Among all these n! left 

cyclic F-squares of order n, find an F-square F = fij that has the smallest 

discrepancy using the expression given in (3.2). 

Step 3:  Search s = (q-1) out of n columns of the F-square to form a UF-type 

design UF(n;q
s
). In all, there are 

n
Cs such UF-type designs. 

Step 4:  From these 
n
CsUF-type designs UF(n;q

s
), choose a design UFn(n

s
) such 

that I thas the smallest discrepancy (as given in (3.2)) among all UF(n;q
s
) 

designs generated in Step-3. This design is nearly uniform design. We 

now have UFn(n
s
) on C

s 
where C = [0,1]. 

Step 5:  Let U = (uki),uki= khi (mod n),i = 1, 2, …,s; k = 1, 2, …, n be the uniform 

design as obtained in Step-4. Calculate Cki= (uki– 0.5) / n and make the 

transformation given in Fang and Wang (1994, p.231). 
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then xk = (xk1, xk2, …, xkq), k = 1, 2, …, n; is a uniform design on Sq-1. 

Note that, the number of possible hi is given by the Euler function φ(n) defined 

by Hua (1956) as follows: 
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where, p runs over the prime divisors of n. For example, 

 6
3

1
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Because 9 = 3 × 3, and the possible associated hi are 1, 2, 4, 5, 7 and 8. 

In this paper, we have presented two classes of uniform designs for mixture 

application. We have studied properties of these classes of designs for various 

models. The two classes of considered designs are (i) mixture designs 

constructed using uniform designs based on cyclic F-squares for two designs 

with different runs and (ii) mixture designs constructed by projecting the uniform 

designs based on good lattice point method based on two designs with different 

runs. Consider the case n = 4. We have taken 4 = 3 as it yields centered L2-

discrepancy (CD2), the natural order being 1 2 3 3. This sequence is denoted with 

last-previous (LP) value. For the other sequence, we have taken 4 = 1 as it yields 

centered L2-discrepancy (CD2), the natural order being 1 2 3 1. We have denoted 

this sequence with last-first (LF) value.  Hence the considered designs with 

different runs are denoted by LP and LF.  

Using the method given above, we have first obtained the most uniform designs 

based on cyclic F-squares. These designs are denoted here by DUF. Then using 

step 5, we have obtained mixture designs for three and four component mixtures. 

These are denoted here by DF. We have also generated mixture designs through 

projection of uniform designs DUF as described in Section 5. So we now have two 

classes of designs DF and DUF for both the sequences LP and LF, respectively. 

The uniformity measure for each of these classes of designs is calculated using 

(3.2). The discrepancies CD2 for each of the classes of mixture designs in three 

and four components are given in Table 1 and Table 2, respectively. The most 
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uniform six run designs for three and four component mixtures for each of the 

families DF and DUF are given in Table 3 and Table 4, respectively. 

From Table 1, we observe that for three component mixtures, the design  

DUF(LF) is most uniform for run sizes n = 15 for the two classes DF  and DUF. 

Moreover, DUF (LP) is most uniform for all run sizes except n = 15. All designs 

are most uniform for n = 4 runs.  From Table 2, we observe that for four 

component mixtures, the design DUF(LF) is most uniform for run sizes n = 4 and 

7 and the design DUF(LP) is most uniform for all run sizes except n = 4 and 7. 

When n = 4, the designs DF(LP) and DF(LF) are most uniform. When n = 7, the 

designs DUF(LP) and DUF(LF) are most uniform. The designs DUF(LP) and 

DUF(LF) are obtained through projection of the designs DF(LP) and DF(LF). The 

designs DF(LP) and DUF(LF) are most uniform better than the designs DF(LF) 

and DUF(LP), respectively. 

Table 1: Discrepancies of the most uniform three component mixture designs. 

n DF(LP) DF(LF) DUF(LP) DUF(LF) 

4 0.672528 0.691977 0.621585 0.626328 

5 0.680799 0.703155 0.628167 0.632778 

6 0.685391 0.705232 0.631856 0.636886 

7 0.690831 0.703638 0.628626 0.631139 

8 0.702989 0.711591 0.641498 0.644163 

9 0.698299 0.708262 0.641358 0.644810 

10 0.699276 0.710290 0.633579 0.636435 

11 0.688570 0.709356 0.634094 0.636934 

12 0.708748 0.716759 0.639239 0.641616 

13 0.705680 0.714011 0.637435 0.640063 

14 0.691894 0.698163 0.634056 0.635911 

15 0.702877 0.702108 0.649156 0.648736 

16 0.711894 0.716383 0.645628 0.647331 

17 0.707727 0.708599 0.652365 0.652775 

18 0.707581 0.708261 0.652794 0.653077 
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19 0.712794 0.717675 0.643690 0.645387 

20 0.707428 0.707763 0.648146 0.653689 
 

 

Table 2: Discrepancies for most uniform four component mixture designs. 

n DF(LP) DF(LF) DUF(LP) DUF(LF) 

4 0.861168 0.869273 0.827342 0.824991 

5 0.865524 0.875347 0.825065 0.825174 

6 0.865774 0.878883 0.825161 0.825317 

7 0.866703 0.878016 0.825020 0.824307 

8 0.874400 0.877889 0.825441 0.825482 

9 0.877626 0.884636 0.825589 0.825948 

10 0.875257 0.880175 0.825236 0.825302 

11 0.874308 0.879774 0.825245 0.825308 

12 0.882991 0.887693 0.825711 0.825810 

13 0.876571 0.881749 0.825347 0.825432 

14 0.873899 0.874391 0.825328 0.825329 

15 0.884629 0.886514 0.826045 0.826092 

16 0.886045 0.888752 0.826175 0.826248 

17 0.885668 0.889178 0.826141 0.826252 

18 0.874407 0.877318 0.825825 0.825917 

19 0.876212 1.745720 0.825630 0.825706 

20 0.872871 0.874093 0.825864 0.825909 
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Table 3: The most uniform six run designs for three component mixtures. 

DF(LP) DF(LF) 

0.7113 0.2165 0.0722 

0.2362 0.4455 0.3182 

0.5000 0.1250 0.3750 

0.3545 0.1614 0.4841 

0.1340 0.7939 0.0722 

0.1340 0.3608 0.5052 
 

0.7113 0.2165 0.0722 

0.2362 0.4455 0.3182 

0.5000 0.1250 0.3750 

0.3545 0.5917 0.0538 

0.1340 0.7939 0.0722 

0.7113 0.1203 0.1684 
 

DUF(LP) DUF(LF) 

0.5074 0.2795 0.2131 

0.2886 0.3850 0.3264 

0.4101 0.2374 0.3525 

0.3431 0.2542 0.4028 

0.2415 0.5454 0.2131 

0. 2415 0.3460 0.4125 
 

0.5074 0.2795 0.2131 

0.2886 0.3850 0.3264 

0.4101 0.2374 0.3525 

0.3431 0.4523 0.2046 

0.2415 0.5454 0.2131 

0. 5074 0.2352 0.2574 
 

 

Table 4: The most uniform six run designs for four component mixtures. 

 

DF(LP) DF(LF) 

0.5632 0.2184 0.0546 0.1638 

0.1645 0.2962 0.1348 0.4045 

0.3700 0.0844 0.5001 0.0455 

0.2531 0.1001 0.2695 0.3773 

0.0914 0.6463 0.1967 0.0656 

0.0914 0.2146 0.4048 0.2891 
 

0.5632 0.2184 0.0546 0.1638 

0.1645 0.2962 0.4944 0.0449 

0.3700 0.0844 0.5001 0.0455 

0.2531 0.5313 0.0898 0.1258 

0.0914 0.6463 0.1967 0.0656 

0.5632 0.1032 0.1946 0.1390 
 

DUF(LP) DUF(LF) 

0.2810 0.2469 0.2306 0.2415 

0.2415 0.2546 0.2386 0.2653 

0.2810 0.2469 0.2306 0.2415 

0.2415 0.2546 0.2742 0.2297 
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0.2619 0.2336 0.2748 0.2297 

0.2503 0.2351 0.2519 0.2626 

0.2343 0.2893 0.2447 0.2317 

0.2343 0.2465 0.2653 0.2539 
 

0.2619 0.2336 0.2748 0.2297 

0.2503 0.2779 0.2341 0.2377 

0.2343 0.2893 0.2447 0.2317 

0.2810 0.2355 0.2445 0.2390 
 

 

We have fitted Model I to Model IV to the minimum point most uniform mixture 

designs in three and four components for each of the two classes. Models Hi; i = 

1, 2, 3 to the minimum point most uniform mixture designs in three components 

and Models Hi; i = 2, 3 to the minimum point most uniform mixture designs in 

four components for each of the two classes LP and LF, respectively. The design 

efficiencies D, A and G are as given in Table 5 and Table 6, respectively. 

From Table 5, we observe that for three component mixtures, the designs 

generated from DF(LP) and DF(LF) are in general more efficient than the designs 

generated from DUF(LP) and DUF(LF) for all Model I to IV and Models Hi; i = 1, 

2, 3 as regards D-efficiency. As regards A-efficiency, for Model II to IV, the 

designs generated from DF(LP) and DF(LF) are more efficient than the designs 

generated from DUF(LP) and DUF(LF) and in other models, the designs generated 

from DUF(LP) and DUF(LF) are more efficient than the designs generated from 

DF(LP) and DF(LF). From Table 6, we observe that the designs generated from 

DUF(LP) and DUF(LF) are in general more efficient than the designs generated 

from DF(LP) and DF(LF). Designs based on DUF(LP) is better in terms of 

efficiencies for Model I, III and H2. Designs based on DUF(LF) is better in terms 

of efficiencies for Model II. Designs based on DF(LP) are better for Model IV in 

terms of D-efficiency. 



Table 5: Efficiencies of the minimum point uniform mixture designs for three components. 

Model p DF(LP) DF(LF) DUF(LP) DUF(LF) 

  D-eff A-eff G-eff D-eff A-eff G-eff D-eff A-eff G-eff D-eff A-eff G-eff 

I 6 9.7375E-06 1.2782E-15 1.5E-12 4.42975E-06 1.4154E-16 1.5E-14 3.4636E-06 3.8078E-15 1.5E-13 2.552E-06 7.8113E-16 1.5E-12 

II 7 1.8645E-07 1.7255E-16 1.75E-13 1.1053E-07 3.2596E-18 1.75E-13 8.4310E-08 1.3334E-16 1.75E-12 5.5437E-08 3.7433E-17 1.75E-13 

III 10 2.4114E-10 4.3806E-17 2.5E-14 2.4021E-10 1.1599E-14 2.5E-14 9.7349E-11 2.7202E-17 2.5E-13 1.1219E-10 6.2470E-18 2.5E-13 

IV 6 8.6172E-06 8.9648E-15 1.5E-13 1.2528E-05 8.6331E-16 1.5E-13 2.8269E-06 1.1255E-15 1.5E-13 4.5387E-06 1.1724E-14 1.5E-13 

H1(r=3) 7 4.3705E-07 1.4747E-16 1.675E-13 2.4378E-07 4.6357E-17 1.675E-13 2.9958E-07 7.4569E-16 1.675E-12 2.7274E-07 1.8211E-14 1.675E-14 

H2(r=3) 7 2.4565E-07 1.1828E-16 1.675E-12 1.2875E-07 8.4545E-17 1.675E-12 7.3837E-08 7.8328E-16 1.675E-11 5.1464E-08 1.0229E-16 1.675E-12 

H3(r=3) 7 6.1651E-07 1.2793E-15 1.675E-12 5.2911E-07 7.5107E-16 1.675E-13 1.1305E-07 2.6181E-15 1.675E-12 2.7114E-07 2.1387E-15 1.675E-12 

 

Table 6: Efficiencies of the minimum point uniform mixture designs for four components. 

Model p DF(LP) DF(LF) DUF(LP) DUF(LF) 

  D-eff A-eff G-eff D-eff A-eff G-eff D-eff A-eff G-eff D-eff A-eff G-eff 

I 10 4.9095E-07 3.9135E-16 1.6667E-13 2.7296E-07 8.2451E-16 1.6667E-13 9.054E-07 2.2291E-16 1.6667E-13 1.0433E-08 7.2376E-16 1.6667E-13 

II 14 1.7115E-12 7.1987E-16 3.5E-14 1.3150E-12 7.1987E-16 3.5E-14 1.8794E-10 4.1135E-16 2E-13 2.7359E-11 4.1135E-16 2E-14 

III 20 4.9714E-14 1.0284E-15 5E-14 3.6525E-14 1.0284E-15 5E-14 9.1968E-13 5.8765E-16 2.8571E-13 1.7064E-13 2.7822E-19 3.3333E-14 

IV 8 0.00016838 2.1635E-16 1.3333E-14 3.7762E-08 4.1135E-16 2E-13 2.3483E-06 3.0953E-16 1.3333E-13 2.3588E-05 2.3506E-16 1.1428E-05 

H2(r=3) 14 4.2878E-12 7.1987E-16 3.5E-13 3.2031E-10 7.1987E-16 3.5E-13 3.5250E-10 4.1135E-16 4.1135E-16 6.3163E-11 2.691E-15 2.3333E-13 

H3(r=3) 14 4.8407E-09 7.1987E-16 2.3333E-13 2.2733E-09 1.3990E-15 2.3333E-13 3.7487E-10 4.1135E-16 2.3333E-13 2.6706E-10 4.1135E-16 2E-11 
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7. Restricted Exploration of Mixtures 

For restricted exploration of mixtures i.e. when (1.2) is satisfied, Saxena and 

Nigam (1977) have given a transformation which provides designs constructed 

through symmetric simplex designs. Aggarwal and Singh (2008) suggested the 

following steps to generate projections designs. 

Step 1: Rank the components in order of their increasing ranges (Ui – Li). x1 has 

the smallest range and xq has the largest range. 

Step 2: Consider a mixture design Z satisfying (1.1). This can be selected from 

the four classes of designs obtained in Section 5. 

Step 3: Compute B and Bʹ, the minimum and maximum proportions of any 

component Zi in the design so that 0 ≤ B ≤ Zi ≤ Bʹ ≤ 1 for all Zi. 

Step 4: Make the transformation as given by Saxena and Nigam (1977) i.e., 

iuiiiu zx   ,  i = 1, 2, …,t; u = 1, 2, …, n 

where 

BB

LU
and

BB

BUBL ii

i

ii

i










''

'
  

and 

 
  iut

h hu

t

h hu

iu z
z

x
x














1

1

1

1
  i = t + 1, …,q; u = 1, 2, …, n 

where t ≤ (q-1) is the number of components constrained by (1.2). 

When all the components are constrained by (1.2), then the levels of xq may be 

obtained by xq = 1 - (x1 + x2 + … + xq-1). 

Step 5:  While determining the value of xq in Step-4, if any point xq lies outside 

the range Lq≤ xq ≤ Uq, it may be adjusted by setting xq equal to the 

violated bound and adjusting the level of xq-1 so that (1.2) is satisfied. 

Step 6: The design points from Step-4 combined with different combinations of 

adjusted points result in a number of designs. The design that is most 

uniform and optimal with certain optimality criteria is taken as the best 

design. 

The steps given above are illustrated with the help of examples for three and four 

component mixtures based on F-squares. 

Example 1: Let us first consider a three component example taken from Snee 

and   Marquardt (1974) with components ranked in order of their 

increasing ranges. 

   0.1 ≤ x1 ≤ 0.6 

   0.1 ≤ x2 ≤ 0.7 
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   0.0 ≤ x3 ≤ 0.7 

Using Steps 1 to 4, we obtain designs with different run sizes for each of the two 

considered classes. The discrepancies of these designs are calculated for different 

run sizes and are given in Table 7. Table 8 presents the six run uniform designs 

based on designs given in Table 3. 

 

Table 7: Discrepancies of most uniform three component designs for Example 1. 

1 DF(LP) DF(LF) DUF(LP) DUF(LF) 

4 0.681488 0.672802 0.616094 0.616212 

5 0.680474 0.660865 0.616276 0.615941 

6 0.659181 0.660720 0.615957 0.616017 

7 0.664419 0.666565 0.615895 0.615682 

8 0.666437 0.658828 0.616133 0.615996 

9 0.662670 0.654420 0.616009 0.615910 

10 0.661016 0.663801 0.615732 0.615798 

11 0.662063 0.672179 0.615694 0.615697 

12 0.669371 0.666703 0.616244 0.616067 

13 0.666600 0.664524 0.615912 0.615806 

14 0.653625 0.652520 0.615572 0.615567 

15 0.657551 0.652834 0.616093 0.615860 

16 0.665891 0.663251 0.616098 0.616029 

17 0.662207 0.655734 0.616225 0.615988 

18 0.662159 0.655818 0.616187 0.615928 

19 0.667399 0.665513 0.616057 0.616043 

20 0.660461 0.656061 0.616198 0.616054 
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Table 8: The most uniform six run designs for three component mixtures. 

DF(LP) DF(LF) 

0.5409 0.2332 0.2259 

0.2242 0.4164 0.3594 

0.4000 0.1600 0.4400 

0.3030 0.1891 0.5079 

0.1560 0.6951 0.1489 

0.1560 0.3487 0.4953 
 

0.5417 0.2393 0.2190 

0.2291 0.4202 0.3507 

0.4026 0.1671 0.4303 

0.3069 0.5356 0.1575 

0.1618 0.6951 0.1430 

0.5417 0.1634 0.2950 
 

DUF(LP) DUF(LF) 

0.3584 0.3213 0.3204 

0.3202 0.3434 0.3365 

0.5414 0.3124 0.3462 

0.3297 0.3159 0.3544 

0.3119 0.3770 0.3111 

0.3119 0.3352 0.3529 
 

0.3585 0.3220 0.3195 

0.3208 0.3438 0.3354 

0.3417 0.3133 0.3450 

0.3301 0.3577 0.3121 

0.3127 0.3770 0.3104 

0. 3585 0.3128 0.3287 
 

 

From Table 7, we observe that for Example 1 when n = 4, 6, 10 and 11, DUF(LP) 

is most uniform and DUF(LF) is most uniform for n = 5, 7, 8, 9, 12, 13, 14, 15, 

16, 17, 18, 19 and 20. For n = 6, 7, 10 and 11, DF(LP) is most uniform and 

DF(LF) is most uniform for n = 4, 5, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19 and 20. 

We have fitted Model I to Model IV and Models Hi; i = 1, 2, 3 to the minimum 

point most uniform mixture designs in three components for each of the four 

classes. The design efficiencies D, A and G are given in Table 11. 

Example 2: Let us now consider a four component example taken from Snee 

(1975) with components ranked in order of their increasing ranges. 

   0.07 ≤ x1 ≤ 0.18 

   0.00 ≤ x2 ≤ 0.15 

   0.00 ≤ x3 ≤ 0.30 

   0.37 ≤ x4 ≤ 0.70 

Using Steps 1 to 4, we obtain designs with different run sizes for each of the four 

classes. The discrepancies of these designs are calculated for different run sizes 

and are given in Table 9. Table 10 presents the six run uniform designs based on 

designs given in Table 4. 
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Table 9: Discrepancies of most uniform four component designs for Example 2. 

 

n DF(LP) DF(LF) DUF(LP) DUF(LF) 

4 0.934520 0.905616 0.827773 0.826239 

5 0.923403 0.912608 0.827227 0.826572 

6 0.917171 0.918592 0.826819 0.826915 

7 0.918128 0.912089 0.827080 0.826632 

8 0.927806 0.922770 0.827196 0.827245 

9 0.937198 0.929950 0.828361 0.827862 

10 0.924913 0.920287 0.827630 0.827409 

11 0.923215 0.918763 0.827208 0.826723 

12 0.933938 0.929168 0.828241 0.827850 

13 0.922307 0.919754 0.827224 0.827026 

14 0.929262 0.924009 0.827877 0.827445 

15 0.934432 0.931890 0.828199 0.827787 

16 0.938489 0.934687 0.828649 0.828062 

17 0.934953 0.930937 0.828237 0.829316 

18 0.933185 0.930975 0.827793 0.827632 

19 0.930816 0.932483 0.827756 0.827501 

20 0.934301 0.930737 0.827856 0.827671 

 

Table 10: The most uniform six run designs for four component mixtures. 

 

DF(LP) DF(LF) 

0.1788 0.0503 0.0075 0.7634 

0.0956 0.0724 0.0531 0.7788 

0.1385 0.0122 0.2609 0.5884 

0.1141 0.0167 0.1297 0.7395 

0.0804 0.1720 0.0883 0.6593 

0.0804 0.0492 0.2066 0.6637 
 

0.1643 0.0437 0.0066 0.7854 

0.0923 0.0628 0.2233 0.6216 

0.1294 0.0106 0.2261 0.6338 

0.1083 0.1208 0.0240 0.7470 

0.0791 0.1491 0.0766 0.6952 

0.1643 0.0153 0.0756 0.7448 
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DUF(LP) DUF(LF) 

0.2406 0.2236 0.2179 0.3179 

0.2296 0.2265 0.2240 0.3199 

0.2353 0.2186 0.2514 0.2947 

0.2320 0.2192 0.2341 0.3147 

0.2276 0.2397 0.2286 0.3041 

0.2276 0.2235 0.2443 0.3047 
 

0.2385 0.2224 0.2174 0.3216 

0.2289 0.2250 0.2464 0.2997 

0.2339 0.2180 0.2468 0.3014 

0.2310 0.2327 0.2198 0.3165 

0.2271 0.2365 0.2268 0.3096 

0.2385 0.2186 0.2267 0.3162 
 

From Table 9, we observe that for Example 2 when n = 4, the designs DF(LF) 

and DUF(LF) are most uniform. For n = 6, the designs DF(LP) and DUF(LP) are 

most uniform. We also observe that for four component mixture designs DF and 

DUF with this example are most uniform for all runs as compared to Aggarwal 

and Singh (2008). 

We have fitted Model I to Model IV and Models Hi; i = 2 and 3 to the minimum 

point most uniform mixture designs in four components for each of the four 

classes. The design efficiencies D, A and G are as given in Table 12. 

From Table 11, we observe that the designs generated from DF(LP) is better in 

terms of D- efficiency for Model II, III, H2 and H3 while DF(LF) is better for 

Model I, IV and H1. The designs generated from DF(LP) is better in terms of A- 

efficiency for Model III and H2 and DF(LF) is better for Model I, II, IV, H1 and 

H3. The designs generated from DF(LP) are better in terms of G-efficiency for 

Model H2, DF(LF) is better for Model II, DUF(LP) is better for Model III, H1 and 

H3 while DUF(LF) is better for Model I and IV.  

From Table 12, we observe that the designs generated from DF(LP) and DF(LF) 

are in general more efficient than the designs generated from DUF(LP) and 

DUF(LF). Designs based on DUF(LP) is better in terms of efficiencies for Model 

III and H2. Designs based on DF(LP) is better in terms of efficiencies for Model I, 

II, IV and H3. Designs based on DUF(LP) is better for Model III and H2 as regards 

D-efficiency. 

 

 



 

 

Table 11: Efficiencies of the minimum point uniform mixture designs for three components in Example 1. 

Model p DF(LP) DF(LF) DUF(LP) DUF(LF) 

  D-eff A-eff G-eff D-eff A-eff G-eff D-eff A-eff G-eff D-eff A-eff G-eff 

I 6 0.16350 0.00110 46.7720 0.1861 0.00323 49.7471 0.411E-3 0.43E-6 49.8629 0.324E-3 0.422E-6 53.1726 

II 7 0.04740 0.162E-4 54.4781 0.0471 0.742E-4 58.0450 0.742E-4 0.362E-7 53.2255 0.766E-4 0.7694E-7 54.3951 

III 10 0.00440 0.716E-5 71.4357 0.0043 0.702E-5 71.4357 0.519E-5 0.114E-7 78.7352 0.522E-5 0.110E-7 67.4554 

IV 6 0.20561 0.00243 46.7057 0.2342 0.00784 49.7125 0.00032 0.346E-6 49.0637 0.361E-4 0.556E-6 53.9016 

H1(r=3) 7 0.41792 0.01543 58.1531 0.4830 0.04021 52.4329 0.00611 0.882E-4 58.1666 0.00712 0.255E-4 52.5045 

H2(r=3) 7 0.04593 0.521E-4 54.9390 0.0436 0.101E-4 54.0482 0.561E-4 0.414E-7 53.8039 0.702E-4 0.205E-7 53.9084 

H3(r=3) 7 0.06651 0.196E-4 54.2299 0.0622 0.439E-4 56.1987 0.892E-4 0.783E-7 260.8242 0.961E-4 0.921E-7 50.3221 

 

Table 12: Efficiencies of the minimum point uniform mixture designs for four components in Example 2. 

Model p DF(LP) DF(LF) DUF(LP) DUF(LF) 

  D-eff A-eff G-eff D-eff A-eff G-eff D-eff A-eff G-eff D-eff A-eff G-eff 

I 10 4.47176E-08 1.03244E-17 1.66667E-14 9.64023E-11 3.56379E-17 2.5E-13 7.6344E-09 1.38819E-15 1.6667E-12 5.58969E-11 3.34685E-16 2.5E-13 

II 14 2.34133E-11 1.70428E-19 2.33333E-13 4.19051E-13 1.43056E-18 3.5E-14 2.23283E-11 1.27588E-17 2.3333E-13 5.7071E-13 1.55039E-17 3.5E-13 

III 20 2.55634E-13 2.19775E-19 3.33333E-15 1.64889E-13 5.17507E-18 5.0E-14 5.19251E-13 5.9459E-18 3.3333E-13 2.26439E-14 3.49895E-20 5E-14 

IV 8 1.1314E-05 6.24132E-16 1.33333E-13 1.00699E-08 4.02325E-16 2.0E-14 2.47232E-06 4.85838E-15 1.3333E-12 4.32156E-09 1.81587E-15 2E-13 

H2(r=3) 14 9.44261E-11 2.94449E-18 2.33333E-14 1.15283E-12 3.83852E-18 3.5E-13 1.70278E-10 9.13099E-16 2.3333E-13 1.55869E-12 4.89052E-17 3.5E-13 

H3(r=3) 14 9.68000E-10 2.03553E-16 2.33333E-14 1.35677E-11 7.30628E-16 3.5E-13 1.83134E-10 2.002E-16 2.3333E-15 1.00185E-11 6.37616E-15 3.5E-13 
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8. Conclusions 

For three and four components, D-, A- and G-efficient uniform designs for 

mixture experiments based on latin squares for Scheffe’s quadratic model (1958), 

Darroch and Waller’s (1985) model and Becker’s (1968) model were obtained by 

Aggarwal and Singh (2008). In this paper, we have found the centered L2-

discrepancy with three and four components for the considered classes of designs 

based on F-squares. The design DUF(LF) is most uniform for run sizes n = 4 and 

7 in three components. When n = 4, all the designs are most uniform for three 

components. The designs DUF(LP) and DUF(LF) are obtained through projection 

of the designs DF(LP) and DF(LF) based on four components. The designs 

DF(LP) and DUF(LF) are most uniform better than the designs DF(LF) and 

DUF(LP) for four components. 

In this paper, we have computed the D-, A- and G- efficiencies of three and four 

component mixture experiments based on F-squares for Scheffe’s (1958) 

quadratic model, Darroch and Waller’s (1985) model and Becker’s (1968) model. 

For three components, the designs generated from DF(LP) is better in terms of D- 

efficiency for Model II, III, H2 and H3 and DF(LF) is better in terms of D- 

efficiency for Model I, IV and H1. The designs generated from DF(LP) is better in 

terms of A- efficiency for Model III and H2 and DF(LF) is better for Model I, II, 

IV, H1 and H3. The designs generated from DF(LP) is better in terms of G- 

efficiency for Model H2, DF(LF) is better for Model II, DUF(LP) is better for 

Model III, H1 and H3 and DUF(LF) is better for Model I and IV. For four 

components, the designs generated from DF(LP) and DF(LF) are in general more 

efficient than the designs generated from DUF(LP) and DUF(LF). Designs based 

on DUF(LP) is better in terms of D- efficiency for Model III and H2. Designs 

based on DF(LP) is better in terms of D- efficiency for Model I, II, IV and H3. 

Designs based on DUF(LP) is better for Model III and H2 as regards D-efficiency. 
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