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ABSTRACT  

In the present paper, the smoothed estimators are proposed for estimating 

mixing proportion in a mixed model based on independent and not 

identically distributed (non-iid) random samples of the existing estimators 

proposed by Boes(1966) - James(1978) called BJ estimator here and which 

was constructed for estimating mixing proportion based on independent 

and identically distribution random samples.  The proposed smoothed 

estimators are based on known “kernel function” as described in the 

introduction.  The following results of the smoothed estimators are studied 

under the non-iid setup such as (a) its small sample behavior is compared 

with the unsmoothed version (BJ estimator) based on their mean square 

errors (MSEs) by using Monte-Carlo simulation and established the 

percentage gain in precision of smoothed estimator over its unsmoothed 

version measured interms of their mse. (b) its large sample properties such 

as almost surely (a.s.) convergence and asymptotic normality of these 

estimators are established in the present work. 

1. Introduction 
 

Let X1, X2,…,Xn be a sequence of independent and not identically distributed 

(non-iid) random variables with continuous distribution functions {Fi(x), 1≤ i ≤ 

n} and let H(x) be a continuous cdf of mixture of component cdfs H1(x), ..., 

Hm(x) (m≥ 2) such that  

H(x) =      
 
   (x)                (1.1) 
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where {  ; 1≤j≤m} is a set of mixing proportions satisfying (i) 0<pj<1 (ii) 

   
 
    = 1.  Let    (x) =       

 
   (x)→ H(x) as n →∞ and    (x)= 

  
      

  

   
(x) →   (x),   →∞,  j= 1, 2,…,m, H(x), Hj(x) are unknown 

distribution functions.  The problem of nonparametric estimation of mixing 

proportions pj in a mixture (1.1) of m=2 unknown distributions   (x) are 

investigated based on independent random samples of sizes n,    generated from 

the fixed design regression models, 

   = β   +    , 1≤ i ≤ n,   ~i.i.d.F(x)                          (1.2) 

    =       +    , 1≤ i ≤   , j = 1, 2,…,m,    ~i.i.d.   (x)             (1.3) 

where β’s and t’s are known reals satisfying the model conditions 

   > 0,    
 
    = 0 and 

 

 
   

  = o(   )                (1.4) 

Note that,    is the known real value of i
th
 observation and is taken as ti = 

 

  , i 

=∓1, ∓2,…, ∓n, δ ≥ 
 

 
 fulfill (1.4) and    (x) =       

 
   (x) = F(x) + O(

 

 
   

 ) 

+ … = H(x) + o(   ) and     
(x) =   

      
  

   
(x)→  (x), j=1,2 as   →∞. 

The applications where finite mixture distributions describe mixture populations 

for non-i.i.d. sequence of variables are given below: 

Area Characteristic     
Distribution function 

   (x) 

Survival 

Analysis 

life time of components produced by 

i
th
 machine operated by  th

 foreman. 

Life time distribution of 

various products 

Nutritional 

Studies 

weight for age/height,  age/ weight for 

height of i
th
 infant of  th

 origin or 

group. 

Distribution of weight 

for age/height of i
th
 

infant 

Fisheries 
Fish length or weight of  th

 age of j
th
 

fish. 

Distribution of 

weight/length of i
th
 fish 

Automobiles 
Degree of satisfaction i

th
 customer due 

to  th
 service type 

Distribution of degree of 

customer satisfaction 

Hospitals 
Time taken for treatment of i

th
 patient 

by  th
 type of treatment 

Distribution of time of 

treatment of different 

patients 
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Frequently, the collected data are not from a randomly selected sample, but rather 

from patients, customers or other objects as they come in for service during a 

certain period of time.  These samples are non-i.i.d.  For instance, suppose a car 

dealer has collected data on the degree of customer’s satisfaction and on the 

period of trouble-free time from all his customers for a given year.  Obviously, 

the dealer has ignored several variables on the customer side, such as the driving 

habit.  Other such non-i.i.d. examples are: Data collected from patients over in a 

period of time, patrons of a particular restaurant, and viewers of a certain show, 

etc. 

In these examples the average population is not a well-defined fixed population 

but, for a large sample size n, it can be viewed as the representative population 

pertaining to an ‘average’ patient or customer.  We present here another example 

of a non-i.i.d. situation in sample surveys where the average population is 

actually the population of interest.  Consider a survey designed to obtain the 

national average such as mean/median of a variable X such as the real-estate 

price, annual income, auto insurance charge, etc.  For logistic reasons, suppose 

the data are collected state or country-wise and are put together to estimate the 

national average.  If the regional sample sizes are proportional to the 

corresponding regional population sizes, the average population corresponding to 

the combined sample is exactly the same as the national population average. 

The mixing model with two component populations becomes, 

H(x) = pH1(x) + (1-p)H2(x) 

Here Xi is the characteristic with distribution function   (x) assuming 

  n(x) = n
-1   

   i(x) =       → H(x)  

  jn(x) = n
-1   

   ji(x) =        →   (x)  as n→∞ 

and according to Hosmer(1973) model I,  n, n1 and n2 are independent random 

sample sizes from mixed and component populations selected in such a way that 

n = n1 + n2 with n1 = [ρn], n2 = [(1-ρ)n], 0< ρ <1. 

For more details of such examples reader is referred to Choi and Bulgren(1968), 

Harris(1958), Blischke(1965), Fu(1968-Pattern Recognition), Vardi et al (1985-

Pattern Recognition), Clark(1976-Geology), Macdonald and Pitcher(1979-

Fisheries), Odell and Basu (1976-Remote sensing), Bruni et al(1983-Genetics), 

Merz(1980-Physics) and Christensen et al(1980-Nuclear Physics)  etc. 

i.i.d case: 

The mixing proportion model for iid case is 

F(x) = pG1(x)+(1-p)G2(x)                               (1.5) 
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where F(x), Gj(x); j=1,2 are cdfs of mixed and component populations 

respectively.  The following estimator is studied in the literature. 

Boes-James (BJ) estimator: Let   (x)=        
   (  ≤x) be the empirical 

distribution function of a random sample Xi, 1≤i≤n from a mixture (1.5) of two 

known component d.f.s Gj; j=1,2 as Boes (1966) proposed estimator 

      (x) = 
              

           
                            (1.6) 

and shown it is a minimax unbiased estimator and derived the Cramer-Rao lower 

bound.  James(1978) considered the problem of estimating the mixing proportion 

in a mixture of two known normal distributions.  He studied the simple 

estimators based on (a) the number of observations less than a fixed point r, (b) 

the numbers less than s and greater than t, and (c) the sample mean.  Van 

Houwelingen(1987) used Boes estimator to estimate the mixing proportion by 

using frequency densities and obtained the Cramer-Rao lower bound.  

Jayalakshmi(2002) used Boes-James estimator of Hosmer(1973) model I 

sampling structure based on kernel based empirical distribution function   n(x) = 

n
-1

    
   (

     

  
) and established smoothing improves efficiency when the 

components are known.   

As pointed out in Hall (1981), methods based on nonparametric density 

estimators involves some significant draw backs in their use in the field of 

estimation from mixed data such as  

 specification of window width in kernel based estimators and their 

behavior is very sensitive to the choice of window width parameter and 

 their mean square errors converge at a slower rate than order     . 

To avoid these draw backs, Hall (1981) proposed nonparametric estimators of 

mixing proportions in a finite mixture based on the usual empirical distribution 

functions. 

In the present work, we propose new kernel based estimators, called smoothed 

nonparametric estimators of mixing proportion p in a mixture of two unknown 

component distribution (1.1) and established their superiority over those 

estimators, called the unsmoothed ones based on the usual empirical distribution 

function.  Further, in order to overcome the above drawbacks  

 identify a method of ‘optimal’ choice of band width, which is crucial, in 

the sense of minimum mean square error of such smoothed 

nonparametric estimators and 
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 establish the convergence of mean square errors of proposed smoothed 

estimators at the fastest rate of order    . 

we extend the idea of estimation of mixing proportion p in two directions: 

 Component distributions are completely unknown and estimators thus 

proposed are nonparametric in true sense. 

 The proposed nonparametric estimators are based on independent, but 

not identically distributed samples generated by the fixed design 

regression models described by (1.2)-(1.4). 

The main object of the present paper is to confine attention to m=2 case in the 

model (1.1) and to construct nonparametric estimators based on the usual 

empirical and kernel based empirical distribution functions defined by 

  n(x) = n
-1

    
   (Xi ≤ x),   j(x) =   

     
  

   
(Xji ≤ x)                   (1.7) 

  n(x)= n
-1

    
   (

     

  
),   j(x)=   

    
  

   
(
      

  
), j =1,2             (1.8) 

{an} being the smoothing sequence satisfying 0<    →0, n   →∞ and proposed 

as follows: 

A. Unsmoothed estimators of p: The proposed BJ type unsmoothed estimators 

of p based on the empirical distribution functions are defined, for fixed x=x0, as 

    (  ) =  
               

              
 ,       (  ) = 

                

                
           (1.9) 

B. Smoothed estimators of p: The proposed BJ type smoothed estimators of p 

based on the kernel functions are defined, for fixed x=x0, as 

     (  ) =  
               

              
 ,       (  ) = 

                

                
  (1.10) 

and study the small sample as well as large sample behavior of proposed 

nonparametric estimators.  The results of the present investigations for the non-

i.i.d. sequences are completely new in the literature, even in i.i.d.case as well. 

In section 2, the asymptotics of certain empirical distribution functions defined 

therein are established which are utilized in later sections.  Further, In section 3, 

a.s. representations of both nonparametric estimators of p and the main results 

concerning the asymptotics of present paper such as i) exact mean square 

errors(MSEs) ii) rates of a.s. convergence and iii) asymptotic normality of the 

nonparametric estimators are established.  In section 4, the crucial choice of 

smoothing parameter ‘  ’ in kernel based estimator      (x) is discussed and its 
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value is determined by employing minimum mean square criterion.  Comparisons 

of both estimators based on their MSEs are made and established the superiority 

of smoothed one over the unsmoothed version in section 5.  The simulation work 

is undertaken by Monte Carlo methods, established superiority of smoothed 

estimators empirically over unsmoothed ones in section 6 and comments are 

appended in section 7. 

 

2. Asymptotics of Certain Empirical Functions 
 

In the present section, we study the asymptotic behavior of certain empirical 

functions which are very much used in establishing the main results of the 

present paper.  Firstly, define 

   (x) =    (x) – E    (x) = n
-1

     
   (

     

  
) – E K(

     

  
)] 

           =         
 
   (x)                    (2.1) 

and study its asymptotics in the following. 

Lemma 2.1: Assume the conditions on {Fi}, the kernel function k and the 

bandwidth sequence {an} given below: 

AI:   i) Fi(x) is uniformly continuous distribution function with finite   

     q
th
 derivatives Fi

(q)
(x) < ∞, 1 ≤ i ≤ n and 

   n
(q)

(x) = 
 

 
  ∑ Fi

(q)
 (x), q = 2,4,6 

    ii)   n(x) = n
-1   

   i(x) → H(x) as n→∞ 

     AII:      i)  The kernel function satisfies    (K) =    
 

  
2j
 dK(t) ≠ 0 and  

    (K) =    
 

  
j 
dK(t) = 0 for  j=1,3,5… 

ii)  j(K) = 2   
 

  
j 
K(t)dK(t) < ∞ , j = 0, 1, 2, 3 

     AIII:  {an} is a sequence of bandwidths such that 

i) 0 < an ↓ 0 ; nan → ∞ as n → ∞ 

ii) n   
 → 0 as n → ∞ 

then 

a)   (x) = Var    (x) =   (x) - 
      

 
 - 

  

 
    

   
(x)  1(K) + O(

  
 

 
) 

b)   (x) = E    (x) –     (x) =  
   
 

  
   

   
(x)  (K) + 

   
 

  
   

   
(x)  (K)  

+ o(  
 ) 

c)    (x) = O( 
     

 
 
 

  a.s. 

where   (x) = 
                  

 
 ,    (x) =        

 
   (x) -    (x))

2
 > 0 
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Proof: From (2.1), 

n  (x) = nVar    (x) = Var(          
 
   (x)) 

            = n
-1

      
   K(

    

  
) - E K( 

    

  
)}]

2
 

            = n
-1

    
   E K

2
(
    

  
) – E

2
 K( 

    

  
)} 

             = n
-1

    
       (x) -    

 (x)]                                    (2.2) 

   (x) = E K
2
 ( 

    

  
) = ∫ K

2
 ( 

   

  
) dFi(u) = ∫ Fi(x-ant)dK

2
(t) 

          = Fi(x)∫dK
2
(t) – Fi

(1)
(x)an∫tdK

2
(t) + 

  
 

  
Fi

(2)
(x)∫t

2
dK

2
(t) 

 - 
  
 

  
Fi

(3)
(x)∫t

3
dK

2
(t) + 

  
 

  
Fi

(4)
(x)∫t

4
dK

2
(t) + o(  

 ) 

           = Fi(x)  0(k) – an Fi
 (1)

 (x)  1(K) + 
  
 

  
  Fi

 (2)
(x)  2(K) - 

  
 

  
Fi

(3)
(x)        

   3(K)  + 
  
 

  
  Fi

(4)
(x)  4(K) + o(  

 )                                    (2.3) 

where  o(K) = 2   
 

  
(t) dK(t) = 2   

 

 
 dy = 1 while  

   (x)= E K( 
    

  
) =   i (x - ant) dK(t)     

= {Fi (x) +  
   
 

  

 
Fi 

(2) 
(x)    

 

  
2
dK(t) +  

   
 

  

 
Fi 

(4) 
(x)    

 

  
4
 dK(t) + 

o(an
4
)}    =   (x) + 

  
 

 
   

   
(x)   (K)+ 

  
 

  
   

   
(x)   (K) + o(  

 )      (2.4) 

From (2.3) and (2.4),(2.2) becomes, 

 n  (x) =         
 
   (x) -      

   
(x)  (K) + 

  
 

 
   

   
(x)  (K) - 

  
 

  
 

  
   

(x)  (K) + 
  
 

  
   

   
(x)  (K) + o(  

 )] 

– (  (x) + 
  
 

 
   

   
(x)   (K)+ 

  
 

  
   

   
(x)   (K) + o(  

 ))
2
} 

              =       
 
   (x)(1 -   (x)) -      

   
(x)  1(K) 

+   
 {

 

 
    

   
(x)   (K) -       

 
   (x)  

   
(x)  (K)}+ 

  
 

  
    

   
(x)  (K) 

-   
  {

 

 
    

    
(x)  

 (K)- 
 

  
    

   
     (K)} + o(  

 /n)} 

where       
 
   (x)(1 -   (x))=    (x) -    

 (x)– (      
  

   (x) -    
 (x)) = 

   (x)(1-   (x)) -    (x)  

so that 

  (x)= 
                         

 
  - 

  

 
   

   
(x) 1(K)+ 

  
 

 
     +o(  

 /n)  (2.5) 

where     = 
 

 
    

   
(x)   (K) -       

 
   (x)  

   
(x)  (K) 

  (x) = E    
 (x) =   (x) - 

      

 
 - 

  

 
    

   
(x) 1(K) + O(

  
 

 
)         
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which proves part a.  Further to prove part b, by definition 

   (x) = E    (x) -    (x) = 
 

 
∑ E K ( 

    

  
) -    (x) 

          = 
 

 
∑   i (x - ant) dK(t) -    (x)    

          = 
 

 
  ∑ {Fi (x) + 

   
 

  

 
Fi 

(2) 
(x)   

 

  
2
dK(t) +  

   
 

  

 
Fi

(4) 
(x)    

 

  
4
dK(t) + 

o(an
4
)} -    (x) 

          = 
   
 

  
    

   
(x)  (K) + 

   
 

  
    

   
(x)  (K) + o(an

4
) 

yielding  

  (x) = 
   
 

  
   

   
(x)  (K) + 

   
 

  
   

   
(x)  (K) + o(an

4
)                 (2.6) 

which proves part b. 

In order to prove part c relating to the rates of a.s. convergence of    (x) 

as n →∞, from (2.1) we have, 

    (x) =         
 
   (x) =     (x) 

   
  = E (   

 (x)) =   (x)(1-  (x)) -     
   

(x)  (K) + O(  
 ) 

    
  = 

 

 
       

   = 
               

 
 - 

          
   

   

 
 + O(  

 ) 

        =    (x)(1-    (x)) -    (x) -      
   

(x)  (K) + O(  
 ) = C < ∞ 

By applying Bernstein (1946) inequality to {   (x)} with M = 2, 

P(        
 
   (x) > t) ≤ exp ( - 

   

 
 

    
 

 
  
 )                (2.7) 

By setting t = ( 
       

 
 
 

   

R.H.S. of (2.7) = exp [ - 
       

  
 

   
 

 
   

       

 
 
 
 

 ] 

              = exp [ - 
       

  
 

     
 

  
   

      

 
 
 
   

 ] 

              = exp [  
       

   
 

  
   

      

 
 
 
   

 ] 

              =     for sufficiently large n. 

⇒    
   (    (x) > t ) ≤      

    < ∞ 

By Borel – Cantelli lemma, we conclude that                  O(
    

 
     as n→∞  



On smoothed nonparametric estimation of mixing….. 

111 

 

   (x) =     (x)            O(
    

 
            

   

Similarly, define    (x) =    (x) – E    (x),   (x) = E    (x) –     (x), j=1,2 

Corollary 2.2: Under the conditions of Lemma 2.1, 

i.   (x) = Var    (x) =   (x) - 
      

  
 - 

  

  
    

   
(x)  1(K) + O(

  
 

  
) 

ii.   (x)= 
   
 

  
   

   
(x)  (K)+ 

   
 

  
   

   
(x)  (K)+ o(  

 ) 

iii.    (x) =   (x) -   (x) =  
   
 

  
 [   

   
(x) -    

   
(x)]  (K)  

       + 
   
 

  
 [   

   
(x) -    

   
(x)]  (K)+ 

o(  
 ) 

iv.    (x) =   (x) -   (x) = O(  
 ) 

v.    (x) = O( 
     

  
 
 

  a.s. 

where for j=1,2,   (x)=
                  

  
,   (x)=  

       
 
   (x)-   (x))

2 
> 0 

Proof: Proof follows exactly on the similar line of argument as for Lemma 2.1. 

   

Further, define    (x) =    (x) – E    (x),    (x) =    (x) – E    (x), j=1,2  

   

Corollary 2.3: Assume the uniform continuity on {Fi(x)}.  Then  

i. Var    (x) =   (x) - 
      

 
 = 

  

 
 

ii. Var    (x) =   (x) - 
      

  
 = 

  

  
 , j = 1,2 

iii.    (x) = O( 
     

 
 
 

  a.s.;    (x) = O( 
     

  
 
 

  a.s. 

Proof: The result follows by adopting the similar line of argument as in the proof 

of Lemma 2.1.     

3. A.S. Representations to      (x) and       (x) 

In order to establish the asymptotics of      (x) and      (x), first we obtain their 

a.s. representations in the following results. 

Theorem 3.1: Under the conditions of Lemma 2.1, with probability 1, 
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     (x) - p =    
  

(x)   (x) +    (x) +    

where    (x) =    
  

(x)[   (x) – (1 - p)   (x) - p   (x)],    = -    
  

(x)[(1-p)   
 (x) 

- p   
 (x)] + O(

     

 
) 

   (x) =   (x) -   (x) and    (x) as defined in Corollary 2.2. 

Proof: First consider      (x) given in (1.10) and let Dn(x) =    (x) -    (x) 

Then, Dn(x)     (x) =    (x) -    (x) 

       =    (x) – E    (x) + E    (x) -    (x) +    (x) – H(x) 

   + H(x) -   (x) +   (x) -    (x) +    (x) - E    (x) + E 

       -    (x) 

        =    (x) -    (x)+   (x) +   (x) + p   (x) -   (x) -   (x) 

        =    (x)-    (x)+    (x)+    (x)+ p   (x)  

      =:    (x)-    (x)+   (x)                            (3.1) 

where   (x) =    (x) – H(x),   (x) =    (x) -   (x); j=1,2,    (x) =   (x)-   (x),  

   (x) =   (x) -   (x), Cn(x) =    (x) +    (x) + p   (x) and further, we have 

as in (3.1) 

Dn(x) =    (x) -    (x) 

           =    (x) – E    (x) + E    (x) -    (x) +    (x) –   (x) +   (x) - 

  (x) +   (x) -    (x)  

+    (x) - E    (x) + E        -    (x) 

           =    (x) -    (x) +   (x) +   (x) +    (x) -   (x) -   (x) 

           =    (x) -    (x) +    (x) +    (x) +    (x)          

             =:    (x) -    (x) + D12(x)                              (3.2) 

where    (x) =   (x) -   (x),    (x) =   (x) -   (x), D12(x)=    (x) +    (x) + 

   (x)=    (x) + O(  
 ) 

From (3.1) and (3.2), 

      (x) =   
  (x)(   (x) -    (x) + Cn(x)) 

            = (   (x) -    (x) + Cn(x))[   (x) -    (x) + D12(x)]
-1

 

=    
  (x)[   (x) -    (x) + Cn(x)][ 1 - 

              

      
]

-1 
                (3.3)   

=    
  (x)[   (x) -    (x) + Cn(x)] [1 + 

              

      
 + 

                
 

   
    

 + ……] 

            =    (x) +    (x) +    (x)                        (3.4) 

From (3.1) and the regression condition (1.4) 
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    (x) =    
  

(x)[   (x) -    (x) +    (x) + p   (x) + o(   )] 

            = p + 
      

      
 + 

               

      
 + o(   ) 

       (x) =    
  

(x)[   (x) -    (x) +    (x) + p   (x) + o(   )](   (x)-    (x)) 

            = 
                  

      
 +    

  
(x)[   (x)(   (x) -    (x))] 

           +    
  

(x)[   (x)   (x) -    (x)   (x) -    
 (x) +    (x)    (x)] 

             = 
                  

      
 -    

  
(x)   

 (x) +     

where in view of Corollary 2.2, 

    =    
  

(x)[   (x)(   (x) -    (x)) +    (x)   (x) -    (x)   (x) + 

   (x)   (x)] 

       = O(  
 (

     

 
)

1/2
 V  

     

 
) a.s. 

   (x) =    
  

(x)[   (x)-    (x)+    (x) + p   (x)+ o(   )][   
 (x) + 

   
 (x) - 2   (x)   (x)] 

            = 
     

          
     

   
    

 +     

where     =    
  

(x)[   (x)-    (x)+    (x) + O(   )][   
 (x) +    

 (x) - 

2   (x)   (x) – 2p   (x)   (x)] 

                   O(  
  (

     

 
) V (

     

 
)

3/2
) 

in view of Lemma 2.1, Corollary 2.2 and thus (3.4) becomes 

     (x) = p + 
      

      
 +    

  
(x)[   (x) – (1 - p)   (x) - p   (x)] 

-   
  

(x)[(1-p)   
 (x) - p   

 (x)] +     +     

             =:    
  

(x)   (x) +    (x) +                  (3.5) 

where    = -    
  

(x)[(1-p)   
 (x) - p   

 (x)]+    +     and    (x),    (x) as 

defined in the statement.  

Theorem 3.2: Under the conditions of Corollary 2.3, 

     (x) - p =    (x) + O(
     

 
) 

where    (x) =    
  

(x)[   (x) – (1 - p)   (x) - p   (x)] 

Proof: The result follows by adopting the similar line of argument as in the proof 

of Theorem 3.1 and using Corollary 2.3.        

Asymptotics of      (x) and      (x): Now we consider the small and large 

sample behavior of the nonparametric estimators      (x) and      (x) of mixing 

proportion p in the mixing model (1.1) for m=2 by utilizing the results 

established in section 2. 
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3A. Mean square errors of      (x) and      (x): Now we establish the variance 

and bias of      (x) to compute its Mean square errors in the following theorem. 

Theorem 3.3: Under the conditions of Lemma 2.1, 

i. Var      (x) =    
  

(x)[  (x) + (1 - p)
2  (x) + p

2  (x)] + O(
  
 

 
) 

ii. Bias      (x) = 
      

      
 + O(

  
 

 
) 

where   (x),   (x),    (x),    (x) are as defined in Lemma 2.1 and Corollary 

2.2. 

Proof: From a.s. representation of      (x) in (3.5), 

     (x) = p +    
  

(x)   (x) +    (x) +    

In order to compute variance, first we consider, 

E      (x) = p +    
  

(x)   (x) + E    (x) + E    + O(   ) 

Since E        = E(   (x) - E   (x)) = 0 ; E    (x) = E(   (x)- E   (x)) = 0 

E(            )=E      E      =0,E   
 (x)=E   

 (x)=E   
 (x)=E   

 (x)=O(   )  

                (3.6)  

since samples of sizes n, n1, n2 are independent and from Lemma 2.1 and 

Corollary 2.3, 

E      (x)= p + 
      

      
 -    

  
(x)[(1- p)  (x) + p  (x)]+ o(   )                    (3.7) 

Bias      (x) = E      (x) – p 

       =   
      

      
 + O(   )        (3.8) 

By Theorem 3.1 and (3.6), 

    
 
(x)Var      (x) = E [     (x) – E      (x)]

2
 

        = E [   (x) + (   – E   )]
2
 

        = E    
 (x) + 2 E    (x)(   – E   ) + E(   – E   )

2
 

where E    
 (x)= [E    

 (x)+(1 – p)
2
E   

 (x)+ p
2
E   

 (x))]/   
 
(x) =[  (x)+(1–

p)
2  (x)+p

2  (x)]/   
 
(x) 
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2 E    (x)(   – E   ) = -2   
  

(x)E[-(1 - p)
2   

 (x) – p
2   

 (x)]=O(   ) 

E(   – E   )
2
 = O(   ) in view of (3.6), so that 

Var      (x)=   
  

(x)[  (x)+(1 – p)
2  (x)+p

2  (x)]+O(   )           (3.9) 

Now by definition of bias and from (3.7) 

Bias
2
      (x) = (E      (x) – p)

2
 

         = 
   
    

   
    

 + O(   )                                    (3.10) 

Theorem 3.4: Under the conditions of Lemma 2.1, 

MSE   n,2(x) =  
   
    

   
    

 +    
  

(x)[  (x) + (1-p)
2  (x) +     (x)] + 

O(   ) 

where   ,    are as defined in Lemma 2.1 and Corollary 2.2. 

Proof: By definition of mean square error, 

MSE   n,2(x) = Var   n,2(x) + Bias
2
   n,2(x) 

By Theorem 3.3, 

MSE   n,2(x) =    
  

(x)[  (x) + (1-p)
2  (x) + p

2  (x))] + 
   
    

   
    

 + O(   ) 

 = 
   
    

   
    

 +    
  

(x)[  (x) + (1-p)
2  (x) +     (x)] + O(   )                                                                                   

                                                                                                                         (3.11) 

In the similar way the MSEs of      (x),     (x) and     (x) are derived in the 

following Corollaries. 

Corollary 3.5: Under the condition of Corollary 2.3, 

MSE      (x)=    
  

(x)[  (x) + (1-p)
2  (x) + p

2  (x))] 

where   (x) = E   
 (x) = 

      

 
,   (x) = E   

 (x) =   (x) = 
      

  
, j=1,2,   (x), 

  (x) are as given in Corollary 2.3. 

The following result gives exact expressions for the mean square errors of BJ 

type estimators     (x),     (x) defined in (1.9)-(1.10) when component 

distributions are known under non-iid situations accepted to publish an article of 

Ramakrishnaiah et al(2019). 

Corollary 3.6:  

MSE(    (x)) =    
     [

                 

 
 - 

      

 
] 
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MSE(    (x)) = MSE(    (x)) -    
  (x)[ 

  

 
   

   
(x)  (K) - 

  
 

 
    

    
(x)  

 (K)] + 

O(    (x)   
 ) + o(  

 ) 

where    (x)= n
-1

    i(x) -   n(x))
2
>0,   (K)= 2  K(t)dK(t)>0,     (x)=   (x) – 

H(x)→0 as n→∞  

3B. Asymptotic normality of      (x) and      (x): We now consider the limiting 

distribution of nonparametric smoothed estimator      (x) of p.  By applying 

Lyapunov CLT to the sequence {    } defined in (2.1) of independent random 

variables, we establish the asymptotic normality of      (x) in the following 

theorems. 

Lemma 3.7: Under the conditions of Lemma 2.1, 

i.       (x)              N (0,   ) as n → ∞ 

where    =     →         (x)(1-  (x)) -     
   

(x)  (K) + O(  
 )] 

ii.        (x)              N (0,  
 ), j = 1, 2 as    → ∞ 

where   
  =      →   

       (x)(1-   (x))-      
   

(x)  (K)+ O(  
 )] 

Proof: Note from Lemma 2.1 and Corollary 2.2, 

    (x) =         
 
   ,      ≤ 2     = M < ∞,   

  = Var     

 
   
 

 
 =  

  
 

 
 =        (x)(1-  (x)) -     

   
(x)  (K) + O(  

 )] 

      =    (x)(1-   (x)) -    (x) -      
   

(x)  (K) + O(  
 ) <∞ 

In order to apply Lyapunov CLT to the sequence {   }, consider the Lyapunov 

condition 

 
 

   
     

      
  ≤ 

 

   
  [    

      
 /n] = O( 

 

     ) →0 as n→∞ 

Now Lyapunov condition is satisfied, Lyapunov CLT to the sequence {   } 

holds. 

 
     
 
 

   
 → N(0,1) 

 i.e. 
  

   
 
     
 
 

  
                      N(0, 1) as n → ∞ 

 i.e. 
     
 
 

  
                      N(0,   ) as n → ∞ 

 as 
   

  
 = (

     
 

 
)

1/2
 → σ as n → ∞ 

 i.e.       (x)              N (0,   ) as n → ∞ 

where    = H(x)(1 – H(x)) – V(x), V(x) =     →    (x) =     →        (x) 

-    (x))
2
 →0 

similarly, it is easy to establish 



On smoothed nonparametric estimation of mixing….. 

117 

 

       (x)              N (0,  
 ), j = 1, 2 as    → ∞ 

where   
 =     →   

       (x)(1-    (x))-      
   

(x)  (K)+O(  
 )]=   (x)(1 - 

  (x) -   (x)) ; j=1,2 

  (x) =      →   
       (x) -    (x))

2
 = 0    

Corollary 3.8: Under the conditions of Corollary 2.3, 

i.       (x)              N (0,   ) as n → ∞ 

where    =     →        (x)(1 -   (x)] 

ii.        (x)              N (0,  
 ), j = 1, 2 as    → ∞ 

where   
  =      →   

        (x)(1 -    (x)] 

Theorem 3.9: under the conditions of Lemma 2.1, 

   (     (x) – p) → N (0,  (x)) as n → ∞ 

where   (x) =    
  (x)     →     (x) +           (x) +       (x)] 

Proof: Recall from a.s. representation of      (x) in (3.5), 

     (x) – p = 
      

      
 +    

  
(x)[   (x) – (1- p)   (x) - p   (x))]+ O(

    

 
) 

Letting    =   
  (x)[         ],   = [                          ] 

= (        )
1
 

   (  n,2(x) – p) =      + O(  
  V (

    

 
))            (3.12) 

From Lemma 3.7, 

i) Zn =   (      ) 

     =   (   (x) - E   (x))              N(0, σ
2
) as n →∞ 

              σ
2
 =     →  n var(      ) =     →  n   

ii)  Zj =     (       - E   (x)) 

              =     (      )              N(0,   
 ) as    →∞ 

               
  =     →     var(      ) 

             =     →       

Since n1 ~ ρn and n2 ~ (1-ρ)n, the components of   are independent and 

asymptotically normal, then (3.12) becomes, 

  (  n,2 – p) =     + O(  
  V (

    

 
)) a.s. → N(0,   (x)) 

    (x) =     →          

where       =   
   [         ]   
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=    
   [    +            +       ] 

Applying Lyapunov CLT to the sequence of independent random variables, we 

establish, 

     (     (x) – p) → N (0,   (x)) as n → ∞ 

where   (x) =    
       →  [    +            +       ]   

   

Theorem 3.10: Assume the uniform continuous distribution functions {Fi(x): 

1≤i≤n}.  Then, 

      (     (x) – p)                       N (0,V1(x)) as n → ∞ 

where V1(x) =    
       →  [   (x)+           (x) +       (x)],    (x) = 

   (x)(1 -    (x)) –    (x) and     (x) =    (x)(1 -    (x)) –    
(x); j=1,2,   (x), 

   
(x) are defined in Lemma 2.1 and Corollary 2.2. 

Proof: The result follows by adopting the similar line of argument as in the proof 

of Lemma 3.7 and using Corollary 3.8.      

     

Corollary 3.11: Under the conditions AI – AIII on {Fi}, the kernel function k 

and the sequence {an},  

   (pn,2(x) – p)                      N(0, 
  

   
    

) as n → ∞ 

where    =     →                (x)) -    (x)],        = n
-1

    i(x) -   n(x))
2
 

>0   

Proof: On the similar line of argument as in the proof of Theorem 3.9 and using 

Corollary 3.6, the result follows.       

     

Corollary 3.12: Under the conditions of Lemma 2.1 on {Fi(x)}, 

   (pn,1(x) – p)                      N(0, 
  

   
    

) as n → ∞ 

Proof: The result follows by the similar arguments of the proof of Corollary 3.7 

and using Theorem 3.10.       

      

3C. Rates of strong convergence of      (x) and      (x): Now we establish a.s. 

convergence of the nonparametric BJ type smoothed estimators      (x) and 

     (x) defined by (1.9)-(1.10) under non-i.i.d. setup in the following result: 

Theorem 3.13: Under the conditions of Lemma 2.1 on {Fi(x)} and the kernel 

function k,  

                     O( 
     

 
 
 

   as n→∞ 

Proof: Recall from (3.5), 



On smoothed nonparametric estimation of mixing….. 

119 

 

     (x) - p =    
  

(x)   (x)+   
  

(x)[   (x) –(1 - p)   (x)- p   (x))] + O( 

     

 
 V   

  (
     

 
))                            

                   (3.13) 

Let     =    (x) – (1 - p)   (x) - p   (x) then  

   (x)(     (x) – p)              (x) +     + O(
    

 
) 

For any    > 0, 

 [      >   ] ⇒          + (1 - p)         + p          >    

P(      >   ) ≤ P(         > 
  

 
) + P(         > 

  

      
) + P(         > 

  

  
) 

                  (3.14) 

By Lemma 2.1(c) and Corollary 2.2(v), we have, for    = O(
    

 
)

1/2
, 

 P(      >   ) <     

By Borel – Cantelli lemma, 

     = O(
    

 
)

1/2
 a.s. as n→∞ 

 i.e.                      O( 
     

 
 
 

   as n→∞     

   

Corollary 3.14: Under the conditions of Corollary 2.3, 

        (x) – p = O(
    

 
)

1/2 
as n→∞ 

Proof: The proof follows exactly on the similar line of argument as for the proof 

of Theorem 3.13.   

Theorem 3.15: Under the conditions of Lemma 2.1, 

i.           = O( 
     

 
 
 

  a.s. 

and by conditions of Corollary 2.3 

ii.           = O( 
     

 
 
 

  a.s. 

Proof: The proof follows exactly on the similar line of argument as for the proof 

of Corollary 2.3.     

4. Optimal Bandwidth        
 

As mentioned in section 1, the selection of band width ‘  ’ in kernel based 

smoothed nonparametric estimators of mixing proportion is very crucial and we 

now a method obtaining the ‘optimal’ value for smoothing parameter ‘  ’ in the 

construction of kernel based nonparametric estimator          in (1.10). We select 

the optimal        as that    for which MSE (     (x)) is the minimum.  Solving 
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the equation 
             

   
 = 0 for   , we have from Theorem 3.4 and Corollary 

3.5,  

i.e. M =    
 
(x)MSE      (x) 

          = 
           

         
      

 
 - 

  

 
     (x) +   

     
 (x) 

      
  

   
 = 0 = - 

 

 
   (x) + 4  

      
 (x) 

where from Lemma 2.1(a) and Corollary 2.2(i), 

    (x) = [   
   

(x) + 
 

  
 (1-p)

2
    

   
(x) + 

 

  
 p

2   
   

(x)]  (K) > 0 

    (x) = 
 

 
 [   

   
(x) -    

   
(x)]  (K) 

so that 

       =   
       

     
    

      ∙                     (4.1) 

 

5. Comparisons Between The Estimators 
 

We first compare the performance of proposed smoothed estimator      (x) with 

Boes-James type estimator      (x), when H1(x), H2(x) are unknown based on the 

minimum mean square error (MSE) criterion under non-i.i.d. setup and establish 

clear superiority of smoothed estimator in the sense of smaller MSE. 

MSE   n,2(x): From Theorem 3.4 and Lemma 2.1, we have as n → ∞, 

   
 (x)MSE   n,2(x) =    

 (x) + [  (x) + (1-p)
2  (x) +     (x)] + O(   ) 

            = 
           

         
      

 
 - 

  

 
 

    (x) +   
     

 (x) + O(   )                (5.1) 

where     (x) and     (x) are  greater than 0 and defined in (4.1). 

MSE      (x) =    
  

(x)[  (x) + (1-p)
2  (x) + p

2  (x))] 

          = 
           

         
      

    
    

                      (5.2) 

From (5.1) and (5.2), 

 MSE   n,2(x) < MSE      (x) 

If 

 
  

 
     (x) >   

     
 (x)                                    (5.3) 

for finite values of n.  Since both the terms in the above inequality are always 

positive and n  
  →0 for moderate values of n, 

       (x) > n  
     

 (x) 

always holds. 
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The percentage gain in precision of      (x) over      (x) is 

                          

            
 X 100 

i.e. 
  
 
             

     
     

            
 X 100 

is always positive in view of (5.3).      

   

6. Monte Carlo Simulation 
 

A simulation study is carried out in the estimation of p by   n,2(  ) and   n,1(  ) 

when two component distributions are unknown and are estimated by using 

empirical distribution function and kernel distribution function for Normal and 

Exponential populations.  The procedure is given in appendix A. 

Table 6.1: Simulation results of   n,1(  ) and   n,2(  ) for different sets N of 

sample size n=48 with p=0.5 and X0 = -2.5, -1.5, 0, 1.5, 2.5 and 2 of Normal 

distributions and X0 = 1.5, 2.5, 3, 3.5, 4, 4.5 and 2 of Exponential distributions. 

p=0.

5 
N 

  (x)=N(    ,   
 ),   (x)= 

N(    , 
 ), H(x)=N(   ,       

 ) 

  (x)=Exp(2),   (x)=Exp(3), 

H(x)=Weibull(1.25,k=0.5) 

  n,1(  ) 
  n,2(  

) 

     
p=0.

5 
  n,1(  )   n,2(  ) 

     

  n,1(  

) 
  n,2(  ) 

efficie

ncy 
  n,1(  )   n,2(  ) 

Efficien

cy 

X0=2 

10 0.40 0.54 0.015 0.007 55.69 

X0=2 

0.841 0.404 0.0039 0.0022 43.90 

50 0.33 0.48 0.021 0.017 19.20 0.854 0.418 0.0063 0.0037 41.03 

100 0.34 0.48 0.020 0.018 10.04 0.855 0.416 0.0063 0.0039 37.24 

200 0.34 0.47 0.020 0.017 15.55 0.855 0.417 0.0063 0.0038 39.14 

300 0.34 0.48 0.020 0.016 18.61 0.854 0.417 0.0063 0.0038 39.78 

400 0.34 0.48 0.020 0.015 22.79 0.854 0.417 0.0063 0.0038 40.09 

500 0.34 0.48 0.020 0.016 21.44 0.854 0.417 0.0063 0.0038 40.28 

X0=-

2.5 

10 0.426 0.565 0.026 0.005 81.88 

X0=1

.5 

0.834 0.313 0.0049 0.0028 42.949 

50 0.438 0.502 0.031 0.012 61.38 0.843 0.325 0.0072 0.0048 33.356 

100 0.419 0.49 0.03 0.015 49.51 0.842 0.323 0.0072 0.0045 37.448 

200 0.429 0.482 0.029 0.017 40.67 0.843 0.325 0.0072 0.0047 35.462 

300 0.425 0.485 0.029 0.016 42.55 0.843 0.325 0.0072 0.0047 34.758 

400 0.424 0.488 0.029 0.016 44.31 0.843 0.325 0.0072 0.0047 34.407 

500 0.426 0.486 0.029 0.016 43.26 0.843 0.325 0.0072 0.0048 34.176 

X0=-

1.5 

10 0.2108 0.6042 0.013 0.002 82.33 

X0=2

.5 

0.744 0.268 0.0172 0.0131 23.801 

50 0.0841 0.2752 0.019 0.01 48.24 0.772 0.289 0.0202 0.0104 48.313 

100 0.0824 0.2592 0.018 0.013 27.97 0.774 0.29 0.0201 0.0104 48.412 

200 0.0848 0.2504 0.018 0.013 30.94 0.773 0.29 0.0243 0.0104 57.251 

300 0.0878 0.248 0.017 0.014 17.77 0.773 0.29 0.0202 0.0104 48.347 
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7. Comments 
 

It shows when the component Normal and Exponential populations with 

parameters respectively are  N(βt1i,0.25), N(βt2i,9) and Exp(2), Exp(3) and weight 

function has taken as empirical distribution function, the mean value of estimate  

  n,1(x0) and   n,2(x0) is close to its  actual value p.  The simulation results show 

     for nonparametric smoothed estimator is less than unsmoothed estimator for 

different values of x, uniformly for all samples.  So the smoothed estimator is 

best estimator in terms of minimum MSE.  The average gain in efficiency due to 

smoothing is lying between 3% to 82% for different sets N of size n. 

 

Appendix A 
 

A simulation study is carried out to estimate mixing proportion p when two 

component distributions are unknown and are estimated by using empirical 

400 0.0871 0.2442 0.017 0.015 10.48 0.772 0.289 0.0202 0.0104 48.444 

500 0.0888 0.2447 0.017 0.015 10.52 0.772 0.289 0.0202 0.0104 48.417 

X0=0 

10 0.328 0.881 0.031 0.014 54.018 

X0=3
.0 

0.7645 0.3013 0.0062 0.00256 58.68 

50 0.331 0.803 0.024 0.021 13.019 0.7517 0.31 0.0051 0.00392 23.18 

100 0.341 0.821 0.025 0.022 9.119 0.7508 0.3079 0.0051 0.00366 27.76 

200 0.332 0.819 0.027 0.023 13.553 0.7504 0.3069 0.0051 0.00352 30.27 

300 0.332 0.825 0.028 0.024 14.153 0.7502 0.3069 0.005 0.00356 29.24 

400 0.334 0.824 0.027 0.024 13.058 0.7503 0.3067 0.005 0.00356 29.51 

500 0.332 0.823 0.028 0.024 13.891 0.7503 0.3067 0.0051 0.00363 28.2 

X0=1.

5 

10 0.286 0.518 0.008 0.01023 -28.74 

 
 

X0=3

.5 

0.7074 0.274 0.0064 0.0045 29.61 

50 0.271 0.477 0.021 0.01549 26.35 0.7133 0.2777 0.0057 0.0045 20.5 

100 0.279 0.458 0.02 0.01674 16.52 0.7115 0.2773 0.0057 0.0044 23.47 

200 0.285 0.473 0.018 0.01559 11.33 0.7098 0.2776 0.0056 0.0045 20.53 

300 0.272 0.478 0.017 0.01527 12.29 0.7102 0.2779 0.0057 0.0045 21.42 

400 0.28 0.477 0.017 0.01523 9.46 0.7104 0.2785 0.0057 0.0045 21.27 

500 0.28 0.478 0.017 0.01552 9.74 0.7105 0.279 0.0058 0.0045 21.24 

X0=2.
5 

10 0.395 0.533 0.0155 0.0074 52.15 

X0=4
.0 

0.6745 0.1907 0.0082 0.0054 33.96 

50 0.31 0.509 0.0235 0.015 36.28 0.6706 0.1927 0.0078 0.006 23.05 

100 0.311 0.505 0.0237 0.0158 33.16 0.6729 0.1924 0.0083 0.006 27.34 

200 0.31 0.506 0.0235 0.0155 34.04 0.6741 0.1922 0.0086 0.0061 29.26 

300 0.31 0.507 0.0235 0.0155 34.08 0.6745 0.192 0.0086 0.0061 29.68 

400 0.31 0.508 0.0235 0.0153 34.84 0.6747 0.1919 0.0087 0.0061 29.95 

500 0.311 0.508 0.0241 0.0156 35.58 0.6748 0.1919 0.0087 0.0061 30.17 
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distribution function and kernel distribution function.  A random samples of sizes 

n1=24 and n2=24 are generated from the two component mixture of the normal 

populations with parameters (  ,   ) = (βt1i, βt2i) and (  
 ,   

 ) = (0.5
2
 , 3

2
) and 

with parameters (  ,  ) = (2,3) for Exponential populations.  The mixed sample 

of size n = n1+n2 = 48 is generated from the normal population with parameters 

(μ= p  + q  ) = (βti =pβt1i+qβt2i) and      = (p  
 +q  

 ) and in case of 

Exponential population, the mixed sample is drawn from Weibull population 

with shape parameter k lessthan 1. Since Weibull distribution with shape 

parameter k<1 arises as a mixture of Exponential distributions (Jewel 1982), the 

samples of sizes n, n1, n2 are independent. Taking p=q= 0.5, β=0.1 and ti = ∓ 
 

   ; 

j = 1, 2,   =1.5 are selected in such a way that     = 0 and    
  → 0.  The 

present simulation study is to estimate nonparametric estimators such as   n,2(  ) 

and   n,1(  ) for x=x0 at 2 and -2.5, -1.5, 0, 1.5, 2.5 are defined as follows. 

  n,1(  ) =  
                

                
  and    n,2(  ) =  

                

                
 

where        ,         are estimated by the usual empirical distribution function 

such as, 

  n(x) = 
 

 
    

   (Xi ≤ x),   j(x) = 
 

  
   

  

   
(Xi,j ≤ x), j = 1, 2; 

If I(Xi ≤ x), assign 1 other wise 0.  

        n,1(  ) = 

 

 
    

              
 

  
   

  
             

 

  
   

  
               

 

  
   

  
             

              (7.1) 

       ,         are estimated by kernel functions defined as, 

  n(  ) = n
-1

    
   (

      

  
) and   j(  ) =   

-1
   

  

   
(
        

  
), j = 1, 2 

Here we used Epanechnikov kernel function as K(u) = 
 

 
 (1 -   );     ≤ 1. 

The Distribution function of Epanechnikov kernel function is 

 K( 
      

  
 ) =   

      
  

  
(t)dt = 

 

 
   

      
  

  
1 -   ) du 

    = 
 

 
      

  

 
   

      
   

    = 
 

 
 [
      

  
 - 
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The computational procedure is as follows. 

1. Generate n uniform random numbers between (0,1). 

2. Generate the cumulative distribution function of Normal and Exponential 

distribution by taking different means and variances. 

3. Generate the mixed normal and Weibull observations by taking different 

means and variance. 
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4. Calculate (7.1) and (7.2) by taking different values of X0. 

Generated the N=500 sets of samples of sizes n=48, n1= 24 and n2=24, so that 

n=n1+n2.  The unsmoothed and smoothed estimators   n,1(x0) and   n,2(x0) are 

computed and compared their mean square errors.  The no. of sets is ignored 

when the value of p does not belong to 0 and 1.  The results are presented in table 

6.1. 
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