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ABSTRACT 

 

Linear mixed model with covariance structures have become increasingly 

popular in longitudinal data analysis because of its wide applications. 

There is a problem of dealing with missing data in longitudinal analysis 

which need careful attention. In missing data analysis there are two 

different mechanisms referred to as missing completely at random and 

missing at random. In this paper estimation of parameters with distinct 

covariance structures using Maximum Likelihood and Restricted 

Maximum Likelihood methods are considered for the evaluation of models 

using six different information criteria with data missing at random. The 

study involves both the nested and non-nested covariance structure for 

comparison based on model selection information criteria. Also, evaluation 

using bootstrap method to identify the most plausible covariance structure 

for longitudinal models are studied. 

1. Introduction 

 

Most of the researchers involved in longitudinal studies face the problem of 

trying to get study subjects return for every follow-up visit as in the case of 

clinical studies. Thus, there is always an amount of missing data when looking at 

these type of studies. There are several reasons attributed to missing data 

including equipment malfunction, subjects are sick or factors like weather may 

prevent a visit or the data entered was incorrect.  

Missing data have three important implications for longitudinal analysis. First, 

the data set is necessarily unbalanced over time since not all individuals have the 

same number of repeated measurement at a common set of occasions. Second, 

there will be a loss of information and a reduction in the precision. Finally, the 
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validity should be established for any method of analysis which will require 

assumptions about the reasons for missingness, often referred as missing data 

mechanism. The main goal in this paper is the use of a linear mixed model setting 

and identify the ability on overall performance of covariance structure using 

information criteria. 

In this paper, we have studied about fourteen heterogeneous covariance 

structures. These covariance structures are divided into two types namely, banded 

and non-banded. The non-banded covariance structure has been studied by 

various authors namely, Hussein and Marshadi (2007), Eyduran and Akbas 

(2010), Kincaid (2012) and Mohanraj and Srinivasan (2015a,b). The banded 

covariance structure was studied by Littell et al. (2000), and Fitzmaurice et al. 

(2004). The study involves using the bootstrap data under linear mixed model 

setup to estimate the parameters using Maximum Likelihood (ML) and Restricted 

Maximum Likelihood Methods (REML) approach and identify the best 

covariance structure model with the help of six information criteria. The idea of 

using the bootstrap is to improve the performance of a model selection rule 

introduced by Efron (1986), and bootstrap sample size is taken to be same as the 

size of the observed and unobserved samples.  

  Generally missing data analysis handles two different mechanisms namely, 

Missing Completely At Random (MCAR) and Missing At Random (MAR). The 

study is now restricted only to MAR approach. The MAR data has been studied 

by Allison (2002) and Enders (2010).  

  In missing data analysis three types of data sets namely, missing data with 

replacement, missing data with case deletion and imputation are involved. Again, 

the case deletion technique has two different deletion methods namely, listwise 

and pairwise deletion. The present study is restricted to the pairwise case deletion 

data. In pairwise deletion, only specific missing values from the analysis are 

removed and not the entire case. In other words, all available data is included. 

The pairwise deletion will result in different sample sizes for each correlation 

being the same were studied by various authors namely, Allison (2002), Little 

and Rubin (2002) and Howell (2008). The present study is focused on missing at 

random data in longitudinal study with pairwise deletion under linear mixed 

models. 

2. Mixed Model Approach 

In linear mixed effects model both fixed and random effects contribute linearly to 

the response function and the general form of such a model is, 

 

  ZXY                               (2.1) 
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Y is an 1n vector of observations,  is an 1p vector of fixed effects, X is an 

pn design matrix for fixed effects,  is a given qn matrix, and   is an 

unobservable random vector of dimensions 1q ,  is an 1n vector of residual 

and both   and  are distributed as N(0,G) and N(0,R) respectively, i.e., 
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Here V),N(X~ Y and variance of Y is RZGZV  ' .The modelV is setting up the 

random-effects design matrix Z and by specifying covariance structures for G and 

R. Simple random effects are a special case of the general mixed model 

specification with Z containing dummy variables, G containing variance 

components in a diagonal structure, and nIR 2 , where nI denotes the 

nn identity matrix. Further, general linear fixed effect model is a special case 

with 0Z and nIR 2 . The ordinary least squares approach is no longer 

appropriate and Generalized Least Squares (GLS) is more appropriate by 

minimizing, 

    XYVXY  1'  

However, it requires knowledge of V and thereby knowledge of G and R. When 

lacking such information, a reasonable estimation for V is obtained and the same 

is substituted in the GLS for the minimization problem. The initial goal thus 

becomes finding a reasonable estimate for G and R. In many situations, the best 

approach is to use likelihood-based methods, exploiting the assumption that  and 

  are normally distributed (Harville (1977) and Laird and Ware (1982)). 

Basically the variance components analysis applies to a mixed effect models, that 

is, one in which there are random effects and fixed effect is considered often as 

an adjunct to these procedures. Variance components analysis may be seen as a 

more computationally efficient procedure useful for models in special designs, 

such as split plot, univariate repeated measures, random block, and other mixed 

effect designs. Variance components procedure supports four methods of 

estimation: Analysis of Variance (ANOVA), ML, REML and Minimum Norm 

Quadratic Unbiased Estimator (MINQUE). But, the present study is restricted to 

the comparison of two likelihood estimation methods namely, ML and REML. 

A favorable theoretical property of ML and REML are given in Little (1995). 

PROC MIXED constructs an objective function associated with ML or REML 

and maximizes it over all unknown parameters. Using calculus, it is possible to 

reduce this maximization problem over the only parameters in G and R. The 

corresponding log-likelihood functions are as follows: 



J. Mohanraj  and M. R. Srinivasan 

 

86 

 

   2log
22

1
log

2

1
:, 1 n

rVrVRGl T
ML    

   






 
  2log

2

)(
log

2

1

2

1
log

2

1
:, 11 pn

XVXrVrVRGl TT
REML

 

where, YVXXVXXYr TT 111 )(  and X is of rank p. Variance components 

models, mixed effects ANOVA models, and linear models for longitudinal data 

are all special cases of model (2.1). When observation are missing in planned 

experiments, like incomplete block design standard linear mixed model approach 

can be used to estimate the parameters and required hypothesis could be tested in 

the presence of random effects. The ML and REML approach to repeated 

measurements and the traditional treatment effects are based on the covariance 

models using the linear mixed model, paying special attention to complete data. 

An important advantage of the linear mixed model approach is that completeness 

of the data on the dependent variable does not complicate the analysis. 

The ML approach will first obtain the values of , 2
  and 2

  that maximize the 

likelihood function over the parameter space. The advantages of ML approach are 

avoidance of negative estimates for the variance components. Its disadvantages 

are; (a) numerically intensive (b) resulting estimators are not unbiased, (c) 

solving the likelihood equations requires an iterative process which may or may 

not converge. Even when it converges, it may converge to a local maxima rather 

than a global maximum, (d) tends to underestimate the variance components and 

(e) distributional properties are not known except asymptotically. 

REML estimators of the variance components are found by maximizing that part 

of the likelihood function that is invariant to fixed effects in the model. The 

likelihood function from Y depends only on the variance components; and the 

REML estimates of the variance components are those values of 2
 and 2

  that 

maximize the restricted likelihood function. The advantages in the case of REML 

are: (a) less numerically intensive than the ML method, (b) REML estimates and 

the ANOVA estimates agree when the data are balanced and all Method of 

Moment estimates of the variance component are non-negative, and (c) REML 

estimates tend to be less biased than the ML estimates. However the REML too 

has disadvantages like ML such as, distributional properties of these estimators 

are not known, except asymptotically. 

 

3. Selection of Covariance Structure 
 

The selection of the most appropriate covariance structure is important in the 

analysis of longitudinal data. The estimates of the parameters of the longitudinal 
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model largely depends on the covariance structure. The covariance estimation is 

also of interest by itself (Fitzmaurice et al.  2004). Several authors have 

contributed to the study of covariance structures. 

The process of analyzing data in the linear mixed model usually begins with the 

choice of G and R, often referred as the covariance structure specification. 

Commenting on the importance of this decision, Littell et al. (2000) noted that 

using incorrect covariance structures could risk obtaining invalid estimators and 

the relevant inference. Littell et al. (2000) suggested that the first thing to do 

when choosing a covariance structure in repeated measures studies is to compute 

the Heterogeneous Compound Symmetry (CSH) covariance matrix and compare 

it to the  estimates obtained using other  heterogeneous covariance structures 

namely, Unstructured (UN), First Order Banded Unstructured (UN(1)), Second 

Order Banded Unstructured (UN(2)), Third Order Banded Unstructured (UN(3)), 

First Order Banded Unstructured Correlations (UNR(1)), Second Order Banded 

Unstructured Correlations(UNR(2)), First Order Heterogeneous Auto Regressive 

(ARH(1)), Heterogeneous Toeplitz (TOEPH), Heterogeneous Toeplitz With One 

Banded (TOEPH(1)), Heterogeneous Toeplitz With Two Banded (TOEPH(2)), 

Heterogeneous Toeplitz with Three Banded (TOEPH(3)), First Order-Factor 

Analytic (FA(1)), Hyunh-Feldt (HF) and notations of the above structures are 

given in the Table(1). PROC MIXED in SAS provides a very flexible 

environment in which model can be many of repeated measures data.  Correlation 

among measurements made on same subject or experiment unit can be modeled 

using random effect and through the specification of a covariance structure. 

PROC MIXED provides a useful covariance structures for modeling both time 

and space, including that of discrete & continuous increments. 

In this paper, we have studied the selection of appropriate covariance structure of 

the data of TLC trail experiment.  Radhakrishnan and Manoharan (2012) have 

studied the general linear regression model using REML approach of selecting 

different homogenous and heterogeneous with banded, non banded covariance 

structures and considered three information criteria namely AIC, AICC and BIC. 

The analysis based on simulation confirmed that Unstructured covariance 

structure is most appropriate among the different covariance structures. Gazel 

(2012) have studied the problem of covariance structure relating to the data 

weights of animal, in which they have adapted the Random Intercept and Slop 

Model (RISM), the covariance structures consider by them are given in two 

groups of covariance structures namely, heterogeneous and homogeneous. The 

heterogeneous covariance structure group members are UN, CSH, ARH(1), 

TOEPH and ANTE(1). The homogeneous covariance structure group members 
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are CS, TOEP and AR(1). The covariance structures are based on the analysis of 

weights of animal data and it is concluded that the heterogeneous models are the 

better performers. Kincaid (2012) have practically described linear mixed models 

with various covariance structure, and concluded that random effect models is a 

better fit in the evaluation of covariance structure and the analyses were worked 

in PROC MIXED documentation in the SAS software. Hussein and Marshadi 

(2007) studied simulation data set using twelve covariance structure and model 

selection using six information criteria, and concluded that CAIC and BIC are 

better performers in these covariance model selection study. Keselman et al. 

(1999) have investigated using the AIC and BIC for various conditions (e.g., 

covariance heterogeneity, non-normality, unequal group sizes) and concluded 

AIC is a better fit in the repeated measures data. Eyduran and Akbas (2010) have 

compared the performance of univariate and multivariate approaches by using 

nine covariance structures using five information criteria and concluded 

multivariate approach is a better fit in the covariance structure study.  Ohlson and 

Koski (2009) studied banded matrices with unequal elements except that certain 

covariance are zero. This banded structure is a special case of the structure 

considered by Chaudhuri et al. (2007). The basic idea is that widely separated 

observations in time or space often appear to be uncorrelated. Therefore, it is 

reasonable to work with a banded covariance structure, where all covariance 

more than ‘n’ steps apart equal zero, a so called n-dependent structure.  However, 

in general it was observed that more the number of covariance parameters in the 

model the lower the efficiency values in the information criteria. However for the 

first order banded structure UN(1), UNR(1) and TOEPH(1) have the same 

covariance structure. 

 

Table (1) Matrix notation of different covariance models 
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Model selection involves the choice of an appropriate model among a set of 

candidate models and is used when there is no particular clear choice among 

many different models. Model selection tools are a useful set of techniques for 

screening through many different covariance models. The choice among models 

can be made by comparing the ML for each of the covariance pattern models. The 

more complex the model is (more parameters) a better fit and a higher likelihood 

function value is obtained and information criteria are widely used in model 

selection.  
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4. Information Criteria 
 

There are two statistics based on the likelihood that make allowance for the 

number of covariance parameters fitted and can be used to compare two models 

which fit the same fixed effects. The log-likelihood value of REML or ML, total 

number of cases ‘n’ (or total of case weights if used) and ‘k’ the numbers of 

model parameters, provide the basis for various information criteria such as: 

(1) Akaike Information Criteria (AIC)     :
  

)log(22 lKAIC   

(2) Corrected Akaike Information Criteria (AICC  :  
)1(

2
)log(2




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(3) Bayesian Information Criteria (BIC)     : 
 

)log()log(2 nklBIC   

(4) Consistent Akaike Information Criteria(CAIC) :
  

)1(log)log(2  nklCAIC  

(5) Hannan-Quinn Information Criteria (HQIC):
   

knlHQIC ))log(log(2)log(2   

(6) Average Information Criteria (AVIC):  CAICBICHQICAICAICAVIC C   

For REML, the value of ‘n’ is chosen to be total number of cases minus number 

of fixed effects parameters and ‘k’ is the number of covariance parameters and 

for ML, the value of ‘n’ is total number of cases and ‘k’ is the number of fixed 

effects parameters plus number of covariance parameters. 

The AIC was developed by Akaike in (1973),  AICC was developed by Hurvich 

and Tsai (1989), BIC by Schwarz (1978) and  HQIC was proposed by Hannan 

and Quinn (1979) proved to be useful in the case of  autoregressive models. 

As k, the dimension (number of parameters) of the candidate model, increases in 

comparison to n, the sample size, AIC becomes a strongly negatively biased 

estimate of the information and the bias AICC. The correction is of particular 

interest and use when the sample size is small, or when the number of fitted 

parameters is moderate to large fraction of the sample size. For linear mixed 

model, the corrected method, AICC, is exactly unbiased. The BIC is a criterion of 

model selection among a finite set of models. It is based, in part, on the likelihood 

function and it is closely related to the AIC. When fitting models, it is possible to 

increase the likelihood by adding parameters, but doing so may result in over 

fitting. Both BIC and AIC resolve this problem by introducing a penalty term for 

the number of parameters in the model; the penalty term is larger in BIC than in 

AIC. The HQIC contain both of AIC and BIC and proved to be useful in the 

determination of the order of an Auto regression.  Burnham and Anderson (2002) 

noted that HQIC, like BIC, but unlike AIC, is not an estimator of Kullback–

Leibler divergence but Claeskens and Hjort (2008) observed that HQIC is not 

http://en.wikipedia.org/wiki/Akaike_information_criterion#CITEREFHurvichTsai1989
http://en.wikipedia.org/wiki/Akaike_information_criterion#CITEREFHurvichTsai1989
http://en.wikipedia.org/wiki/Edward_J._Hannan
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http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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asymptotically efficient. The comparative studies of information criteria are the 

powerful tool that can be used to find out the better fit between various 

covariance models described above. 

Pankaj and Shukla (2011) discussed the longitudinal data for linear mixed model 

setting using REML approach for covariance model selection based on six 

information criteria. Gazel (2012) has proposed the linear mixed model for 

repeated measure data to draw comparison between ML and REML approaches 

of covariance model selection criteria. Radhakrishnan and Monoharan (2012) 

have discussed longitudinal data for linear regression model settings using REML 

approach of covariance model selection. In this study heterogeneous covariance 

structures and model selection information criteria are analyzed in SAS software. 

The heterogeneous models are divided into two types, namely,  

(1) Heterogeneous for non-zero correlation models structures; 

UN, CSH, ARH(1), TOEPH, FA(1) and HF 

(2) Heterogeneous for zero correlation models structures;  

UN (1), UNR (1) and TOEPH (1) 

Generally Heterogeneous models have unequal variances on main diagonal and 

separate covariances as off diagonal, variances are estimated for each treatment 

time and covariances estimated for each pair of treatment times and UN model is 

the most complex of the heterogeneous model.  In this paper, all the covariance 

structures on main diagonals are unequal. 

The likelihood ratio (LR) test can also be used to compare models which fit the 

same fixed effects and whose covariance patterns are nested.  Nesting is when the 

covariance pattern in the simpler model can be obtained by restricting some of the 

parameters in the more complex model.  An example of this would be as follows: 






















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2
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2
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2

1

2
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
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2
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



TOEPH  

 

The CSH model is nested within TOEPH model, since the CSH model holds, then 

the TOEPH model must necessarily hold, with 321   .  

http://en.wikipedia.org/wiki/Efficiency_(statistics)
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In many ways, the LR test is conceptually the easiest of the test considered in this 

section using covariance model. The estimate obtained by ML,
fullICCMl )( is the 

value of the likelihood function for the maximum of the unconstrained model 

and
min

)( ICCMl is the value when the constraints are imposed. The LR test is 

obtained by taking the difference computed as: 

2
df~))(-)((2

min
ICICIC CMlCMl

fullCM
  

and the LR difference are used in comparison of the model selection criteria with 

df as number of covariance parameters. 

This test is always positive (or zero) since the likelihood of the unconstrained 

model is at least as high as that of the constrained model. The LR statistic is 

distributed asymptotically as a Chi-Squared distribution with (n-1) degrees of 

freedom equal to the number of constraints. The LR test described above can be 

used to compare nested covariance models. Two covariance pattern models are 

said to be nested when one (the minimum) model is a special case of the other 

(full i
th
) model.  For a pair of nested models, a LR test statistic can be constructed 

that compares the “full i
th
” and “minimum” model. 

 

5. Analysis of TLC Data 
 

Fitzmaurice et al. (2004) have analyzed Treatment of Lead-Exposed Children 

(TLC) data collected by Rogan et al. (2001) and the same data set is considered 

for the present analysis. Exposure to lead can produce cognitive impairment, 

especially among young children and infants. The TLC data considers a placebo-

controlled, randomized trial of Succimer conducted in 80 children. Children 

received up to three 26-day courses of Succimer or placebo and were followed for 

3 years. The blood lead levels at baseline, week 1, week 4, and week 6 are 

measured for each child and a sample of ten children is presented in the following 

table. Most of the researchers have analyzed the complete TLC data, but practical 

consideration provides an opportunity to relook at the same data with missing 

data analysis. Firstly the study consist of choosing 85% of them randomly and the 

remaining 15% are considered to be missing responses. Similarly we create a data 

set with 20%, 25% and 30% of missing values. The bootstrap of missing 

longitudinal data analyses are considered using the mixed model approach of ML 

and REML with all possible covariance structures described in the earlier section. 
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TLC Data 

 

ID Group Week0 Week1 Week4 Week6 

1 P 31.9 27.9 27.3 34.2 

2 - 29.6 15.8 23.7 - 

3 S 21.5 6.5 7.1 16 

4 P 26.2 - 25.3 24.8 

5 S 21.8 12 - 19.2 

6 S 23 4.2 4 16.2 

7 S 22.2 11.5 9.5 14.5 

8 - 20.5 21.1 - 21.1 

9 S 25 3.9 12.8 12.7 

10 P 33.3 26.2 - - 

 

TLC data of missing observations are analyzed through the pairwise deletion 

technique. The MAR procedure is used in this data set, since observations are 

missing on the independent longitudinal outcome variables. By deletion of a 

missing data case in total, there will be a severe loss of information from the 

point of analysis. The SAS codes for the analysis of performance based on 

information criteria using different covariance structures are given in the 

APPENDIX-I.  

The present study considers the analysis of TLC data based on the general linear 

fixed effect model which is a special case of linear mixed model given in 

equation (1) with 0Z and nIR 2 . The heterogeneous covariance models with 

maximum number of estimated parameters, namely UN, FA(1), CSH and TOEPH 

and HF were found to be the good performers as compared to all the covariance 

structures. In particular, UN and CSH covariance structures have outperformed in 

these entire heterogeneous models. The results are presented in Table (2), Table 

(3), Table (4), Table (5) as given in APPENDIX-II shows the performance of the 

covariance structures based on the estimation methods, ML and REML. 

Goodness of fit result indicates REML as the best covariance parameter 

estimation approach. It is true for a single sample data study but cannot be seen 

directly in the bootstrap samples. The AIC, AICC, HQIC, BIC, CAIC, AVIC 

chosen criteria showed a tendency to rank the Heterogeneous covariance models 

as the best model group as  UN, CSH, FA(1) and HF. 
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The values of AIC and AICC criteria based on ML and REML estimation of 

parameters strongly recommend for these four covariance structures and in 

particular UN covariance model, because the other three covariance models of the 

likelihood differences are smaller (p-value) than UN covariance model and their 

information criteria. The computed values of HQIC, BIC, CAIC and AVIC 

criteria based on ML and REML estimation of parameters strongly recommend 

CSH covariance structure, also these four information criteria have given higher 

likelihood values compared to the values for AIC and AICC. In these 

heterogeneous covariance groups of model selection criteria has shown the 

banded covariance models are the weakest models in the heterogeneous 

covariance model group namely, UN(1), UN(2), UN(3), UNR(1), UNR(2), 

TOEPH(1), TOEPH(2) and TOEPH(3). More critically, the estimates of all 

fourteen covariance structure are very similar and the differences are unlikely to 

affect the results of the primary analyses. 

Now for each of the fourteen covariance structure corresponding to each of the 

six information criteria, the values of Likelihood Ratio (LR) test statistics are 

obtained. The difference in the values of LR test statistics and values of the 

probability (p-value) are given in Table (2-5). This has been done for each of the 

four bootstrap sample data with difference percentages. For example in the case 

of 15% bootstrap missing data set, the difference in the values of the LR test 

statistic between the two covariance structure CSH and UN with respect to the six 

information criteria are given below. 

0.7349)(5.7)2.1644*5.7.1651*5(.2 2

5  p
CSHAIC 

 

 
0.2872)(2.6)1647*5.2.1653*5(.2 2

5  p
CSHAICC 

 

  
)6386.0(9.7)3.1661*5.2.1669*5(.2 2

5  p
UNHQIC 

 

   
0.9328)(3.4)7.1682*5.1687*5(.2 2

5  p
UNBIC   

   
0.5039)(3.9)7.1695*5.1705*5(.2 2

5  p
UNCAIC   

   
)9981.0(7.1)1668*5.1670*5(.2 2

5  p
UNAVIC 

 
 

Each one of the above difference of the LR statistics is compared to a chi-squared 

distribution with 5 degrees of freedom. The value of the first difference (7.5) and 

the p-value (0.7349) show that 
CSHAIC of CSH covariance structure does not 

provide an adequate fit, when compared to the UN covariance structure model. 

The UN covariance structure (p =1.00) provides an adequate fit based on the 

values given in Tables (2-5). In a similar manner the values of the second 

difference (6.2) and their p value (p = 0.2872) showed that 
CSHAICC  of CSH 
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covariance structure does not provide an adequate fit and UN covariance structure 

(p =1.00) provides an adequate fit to the various bootstrap sample sizes. 

The value of the third difference (7.9) and the p-value (0.6386) show that 

UNHQIC of UN covariance structure does not provide an adequate fit, when 

compared to the CSH covariance structure model. The CSH covariance structure 

(p =1.00) provides an adequate fit based on the values given in Tables (2-5). In a 

similar manner the values of the four, fifth and sixth differences (4.3, 9.3 and 1.7) 

and their p values (p=0.9328, 0.5039 and 0.9981) showed that, 

UNBIC ,
UNCAIC and 

UNAVIC of UN covariance structure does not provide an 

adequate fit and CSH (p =1.00) covariance structure provides an adequate fit to 

the various percentages of bootstrap sample sizes. In the tables (2-5) values of p 

=1.000 can be seen directly for the other p values are not seen explicitly since this 

values corresponds to the results of the four bootstrap sample sizes. 

In the above first two difference of the LR test statistics, 
CSHAIC and 

CSHAICC  

indicate that the UN Covariance structure is a significant improvement over the 

simpler CSH covariance model. However,
UNHQIC ,

UNBIC ,
UNCAIC

 
and 

UNAVIC
 

indicate that the CSH covariance structure is a significant improvement over the 

simpler UN Covariance model. In those heterogeneous model with p values 

(1.00) indicate most appropriate model fit (refer to the Table (2-5) in Appendix-

II). The comparison of the nested and non-nested cases in the heterogeneous 

models of the observed 
2 value at the appropriate degrees of freedom is 

approximately significant as indicated by the high p-values (1.00). 

The bootstrap study as carried out has no unanimity and this could be seen 

selecting a covariance structure based on information criteria for various sizes of 

bootstrap missing data samples. For example, the values of AIC, corresponding to 

ML and REML in Table (2) show that UN is an adequate fit in 80% and 80%. 

The CSH is an adequate fit in 10% and 13.3%. The TOEPH is an adequate fit in 

10% and 6.6% and The FA(1) is an adequate fit in 6.6% and 6.6%. In a similar 

manner for each of the other five information criteria, the percentage of bootstrap 

sample providing adequate fit (1.00) to the corresponding models can be 

obtained. The values of the Tables (2-5) provide details about the percentage 

giving the adequate fit with respect to the corresponding model for bootstrap 

sample of sizes 15%, 20%, 25% and 30%. The results were similar in nature 

when the percentages of missing observations are increased from 15% to 30%. 

We note that, in most of the bootstrap missing data sets whenever UN model is 

find to provide adequate fit, FA(1) model also gives an adequate fit to the data. 
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Also, whenever CSH model is find to provide adequate fit, HF model also gives 

an adequate fit in most of bootstrap samples. Generally UN and CSH covariance 

model performance are good in information criteria, as observed in the range of 

55% to 80% of results and FA(1) and HF covariance structures are contained in 

20 % to 45% of results. 

The estimates of all fourteen covariance structures are very similar and the 

differences are unlikely to affect the results of the primary analyses. Therefore, 

statistical analysis justify in using the more complex covariance pattern of the 

UN, CSH, FA(1) and HF covariance model are significantly better fit in 

comparison to other covariance models. 
 

6. Conclusion 
 

In this study of bootstrap method, the linear mixed model was applied on TLC 

missing data of longitudinal study. The results show that performance of REML 

approach seems to be more efficient than compared to ML approach.  

The inference based on different bootstrap sample data set of various percentages 

are not similar but  different.  The overall result revealed that heterogeneous 

covariance models are the best model group in modeling the covariance structures 

as in UN, CSH, FA(1), HF and TOEPH  particularly the UN and CSH, structures 

outperform in all classes of information criteria. 

The model selection criteria play an important role in selecting the appropriate 

covariance structures. The study has shown that though well known criteria 

namely, AIC and AICC suggest UN covariance structure as the most appropriate 

and better than CSH, FA(1) and HF models. The HQIC, CAIC, BIC and AVIC 

strongly suggest CSH covariance structure as the most appropriate and better than 

UN, FA(1) and HF models. The banded covariance models are weakest among 

the heterogeneous covariance structures namely UN(1), UN(2), UN(3), UNR(1), 

UNR(2), TOEPH(1), TOEPH(2) and TOEPH(3). The results show that, the 

information criteria AIC and AICC indicate that the model with UN covariance 

structure is an appropriate choice, while the information criteria HQIC, BIC, 

CAIC and AVIC show the selection of the model with CSH covariance structure 

as most appropriate. In conclusion we observe that, the analysis of  various sizes 

of MAR bootstrap sample sets from the longitudinal data based on linear mixed 

model have shown that UN and CSH covariance structure to be more appropriate 

in the context of fourteen covariance structures. 
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Appendix-I 
 

Sas Codes In Covariance Structures Analysis 

 

 %macro mixmiss; 

 %LET rept = 5; 

 %LET setname = TLC20MISS;  

 %do i = 1 %to &rept;  
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data TLC; 

        set &setname (where = (samp = &i)); 

        y=l0; time=0; output; 

 y=l1; time=1; output; 

 y=l4; time=4; output; 

 y=l6; time=6; output; 

       drop l0 l1 l4 l6; 

 run; 

  proc print data = tlc(obs=1) NOOBS; 

 var samp; 

 run; 

  proc mixed noclprint=10 order=data data=tlc; 

 class id group time; 

 model y = group time group*time/s chisq; 

 repeated time/Type=UN subject=id r;  

 run; 

 %end; 

 %mend; 

 %mixmiss; 

 

{ TYPE=UN, UN(1), UN(2), UN(3), UNR(1), UNR(2), CSH, ARH (1), TOEPH, 

TOEPH(1), 

      TOEPH(2), TOEPH(3), FA(1), HF } 

 

Appendix-II 

 

Table (2) % of most appropriate model for 14 covariance structures corresponding to 

15 % Missing data (p<1.00) 

S.NO 
Covariance 

Structure 

Estimation 

method 

AIC (%) 

)( 2
df AICLR  

AICC (%) 

)( 2
df

CAICLR  

HQIC (%) 

)( 2
df HQICLR  

BIC (%) 

)( 2
df BICLR  

CAIC (%) 

)( 2
df CAICLR  

AVIC (%) 

)( 2
df AVICLR  

1 UN 
ML  

REML  

80% (1.00) 

80% (1.00) 

 70% (1.00) 

73.3%(1.00) 

33.3% 1.00) 

36.6%(1.00) 

0% (1.00) 

0%(1.00) 

0% (1.00) 

 3.3%(1.00) 

16.6%(1.00) 

23.3%(1.00) 

2 UN(1) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

3 UN(2) 
ML 

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

4 UN(3) 
ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

5 UNR(1) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 
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6 UNR(2) 
ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

7 CSH 
ML  

REML 

10%(1.00) 

13.3%(1.00) 

20%(1.00) 

16.6%(1.00) 

46.6%(1.00) 

43.3%(1.00) 

70%(1.00) 

70%(1.00) 

73.3%(1.00) 

73.3%(1.00) 

46.6%(1.00) 

43.3%(1.00) 

8 ARH(1) 
ML 

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

1.00 (3.3%) 

1.00 (3.3%) 

1.00 (0%) 

1.00 (0%) 

9 TOEPH 
ML  

REML  

10%(1.00) 

6.6%(1.00) 

6.6%(1.00) 

6.6%(1.00) 

6.6%(1.00) 

6.6%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

0%(1.00) 

0%(1.00) 

6.6%(1.00) 

6.6%(1.00) 

10 TOEPH(1) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

11 TOEPH(2) 
ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

12 TOEPH(3) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

13 FA(1) 
ML 

REML 

6.6%(1.00) 

6.6%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

16.6%(1.00) 

10%(1.00) 

10%(1.00) 

 6.6%(1.00) 

3.3%(1.00) 

0%(1.00) 

16.6%(1.00) 

16.6%(1.00) 

14 HF 
ML  

REML  

10%(1.00) 

1.00(10%) 

16.6%(1.00) 

13.3%(1.00) 

16.6%(1.00) 

16.6%(1.00) 

20%(1.00) 

20%(1.00) 

20%(1.00) 

20%(1.00) 

16.6%(1.00) 

16.6%(1.00) 

 

 

Table (3) % of most appropriate model for 14 covariance structures corresponding to 20 % 

Missing data (p<1.00) 

S.NO 
Covariance 

Structure 

Estimation 

method 

AIC (%) 

)( 2
df AICLR  

AICC (%) 

)( 2
df

CAICLR  

HQIC (%) 

)( 2
df HQICLR  

BIC (%) 

)( 2
df BICLR  

CAIC (%) 

)( 2
df CAICLR  

AVIC (%) 

)( 2
df AVICLR  

1 UN 
ML  

REML  

63.3%(1.00) 

63.3%(1.00) 

46.6%(1.00) 

50%(1.00) 

26.6%(1.00) 

23.3%(1.00) 

6.6%(1.00) 

6.6%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

16.6%(1.00) 

16.6%(1.00) 

2 UN(1) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

3 UN(2) 
ML 

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

4 UN(3) 
ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

5 UNR(1) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

6 UNR(2) 
ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

7 CSH 
ML  

REML 

13.3%(1.00) 

16.6%(1.00) 

23.3%(1.00) 

20%(1.00) 

30%(1.00) 

33.3%(1.00) 

46.6%(1.00) 

43.3%(1.00) 

60%(1.00) 

60%(1.00) 

36.6%(1.00) 

36.6%(1.00) 

8 ARH(1) 
ML 

REML 

0%(1.00) 

0%(1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

3.3%1.00) 

3.3%1.00) 

3.3%1.00) 

3.3%1.00) 

3.3%1.00) 

3.3%1.00) 

9 TOEPH 
ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

10 TOEPH(1) ML  0% (1.00) 0% (1.00) 0% (1.00) 0% (1.00) 0% (1.00) 0% (1.00) 
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REML 0% (1.00) 0% (1.00) 0% (1.00) 0% (1.00) 0% (1.00) 0% (1.00) 

11 TOEPH(2) 
ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

12 TOEPH(3) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

13 FA(1) 
ML 

REML 

26.6%(1.00) 

26.6%(1.00) 

23.3%(1.00) 

23.3%(1.00) 

13.3%(1.00) 

16.6%(1.00) 

16.6%(1.00) 

13.3%(1.00) 

6.6%(1.00) 

6.6%(1.00) 

16.6%(1.00) 

16.6%(1.00) 

14 HF 
ML  

REML  

13.3%(1.00) 

1.00 (13.3%) 

20%(1.00) 

16.6%(1.00) 

26.6%(1.00) 

26.6%(1.00) 

30%(1.00) 

33.3%(1.00) 

33.3%(1.00) 

33.3%(1.00) 

30%(1.00) 

30%(1.00) 

 

 

Table (4) % of most appropriate model for 14 covariance structures corresponding to 25 % 

Missing data (p<1.00) 

S.NO 

Covaria

nce 

Structur

e 

Estima

tion 

metho

d 

AIC (%) 

)( 2
df AICLR

 

AICC (%) 

)( 2
df

CAICLR

 

HQIC 

(%) 

)( 2
df HQICLR

 

BIC (%) 

)( 2
df BICLR

 

CAIC 

(%) 

)( 2
df CAICLR

 

AVIC (%) 

)( 2
df AVICLR

 

1 
UN 

ML  

REML  

70%(1.00) 

66.6%(1.00) 

63.3%(1.00) 

63.3%(1.00) 

30%(1.00) 

30%(1.00) 

6.6%(1.00) 

3.3%(1.00) 

0%(1.00) 

0%(1.00) 

30%(1.00) 

30%(1.00) 

2 
UN(1) 

ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

3 
UN(2) 

ML 

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

4 
UN(3) 

ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

5 
UNR(1) 

ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

6 
UNR(2) 

ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

7 
CSH 

ML  

REML 

13.3%(1.00) 

13.3%(1.00) 

13.3%(1.00) 

13.3%(1.00) 

40%(1.00) 

36.6%(1.00) 

53.3%(1.00) 

60%(1.00) 

60%(1.00) 

63.3%(1.00) 

33.3%(1.00) 

43.3%(1.00) 

8 
ARH(1) 

ML 

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

9 
TOEPH 

ML  

REML  

0%(1.00) 

3.3%(1.00) 

0%(1.00) 

3.3%(1.00) 

3.3%1.00) 

0%1.00) 

0%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

10 
TOEPH(1) 

ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

11 
TOEPH(2) 

ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

12 
TOEPH(3) 

ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

13 FA(1) ML 20%(1.00) 20%(1.00) 16.6%(1.00) 13.3%(1.00) 6.6%(1.00) 16.6%(1.00) 
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REML 26.6%(1.00) 26.6%(1.00) 16.6%(1.00) 10%(1.00) 3.3%(1.00) 16.6%(1.00) 

14 
HF 

ML  

REML  

3.3%(1.00) 

0%(1.00) 

3.3%(1.00) 

0%(1.00) 

16.6%(1.00) 

20%(1.00) 

26.6%(1.00) 

23.3%(1.00) 

30%(1.00) 

30%(1.00) 

20%(1.00) 

20%(1.00) 

 

 

Table (5) % of most appropriate model for 14 covariance structures corresponding to 

30 % Missing data (p<1.00) 

S.NO 
Covariance 

Structure 

Estimation 

method 

AIC (%) 

)( 2
df AICLR  

AICC (%) 

)( 2
df

CAICLR  

HQIC (%) 

)( 2
df HQICLR  

BIC (%) 

)( 2
df BICLR  

CAIC (%) 

)( 2
df CAICLR  

AVIC (%) 

)( 2
df AVICLR  

1 UN 
ML  

REML  

70%(1.00) 

63.3%(1.00) 

63.3%(1.00) 

60%(1.00) 

30%(1.00) 

26.6%(1.00) 

6.6%(1.00) 

0%(1.00) 

0% (1.00) 

0% (1.00) 

13.3%(1.00) 

13.3%(1.00) 

2 UN(1) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

3 UN(2) 
ML 

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

4 UN(3) 
ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

5 UNR(1) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

6 UNR(2) 
ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

7 CSH 
ML  

REML 

13.3%(1.00) 

13.3%(1.00) 

13.3%(1.00) 

16.6%(1.00) 

40%(1.00) 

46.6%(1.00) 

53.3%(1.00) 

60%(1.00) 

60%(1.00) 

60%(1.00) 

33.3%(1.00) 

46.6%(1.00) 

8 ARH(1) 
ML 

REML 

0%(1.00) 

0%(1.00) 

0%(1.00) 

0%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

9 TOEPH 
ML  

REML  

0%(1.00) 

3.3%(1.00) 

0%(1.00) 

3.3%(1.00) 

3.3%(1.00) 

0%(1.00) 

0% (1.00) 

0% (1.00) 

3.3%(1.00) 

0%(1.00) 

3.3%(1.00) 

0%(1.00) 

10 TOEPH(1) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

11 TOEPH(2) 
ML  

REML  

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

12 TOEPH(3) 
ML  

REML 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

0% (1.00) 

13 FA(1) 
ML 

REML 

20%(1.00) 

26.6%(1.00) 

20%(1.00) 

30%(1.00) 

16.6%(1.00) 

26.6%(1.00) 

13.3%(1.00) 

20%(1.00) 

6.6%(1.00) 

13.3%(1.00) 

16.6%(1.00) 

20%(1.00) 

14 HF 
ML  

REML  

3.3%(1.00) 

6.6%(1.00) 

3.3%(1.00) 

6.6%(1.00) 

16.6%(1.00) 

16.6%(1.00) 

26.6%(1.00) 

23.3%(1.00) 

30%(1.00) 

26.6%(1.00) 

20%(1.00) 

20%(1.00) 

 

 

  


