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ABSTRACT 

 

Tropical cyclones (TCs) are one of the most destructive natural hazards in the 

tropical South Pacific region, so understanding characteristics of their movement 

is important for hazard risk assessment and adaptation. This study examines the 

statistical characteristics of track shape for 291 TCs from 1970 to 2008 in the 

South Pacific (160°E–120°W, 0–25°S). The particular focus is on TC track 

sinuosity properties and how these may be characterised and grouped using a 

robust technique such that categories so constructed within which TCs are of 

similar sinuosity characteristics. In this paper, we propose a mathematical 

programming approach to determine the optimum boundary points of the 

categories that seeks minimisation of the sum of weighted variance of sinuosity 

index values between categories. The problem is formulated as a nonlinear 

programming problem which is then solved using a dynamic programming 

technique. Applying the technique we proposed five homogeneous categories of 

TC tracks found to be (1) straight, (2) near straight, (3) curving, (4) sinuous, and 

(5) convoluted tracks. The results are compared with the track-shape categories 

that are obtained by the K-mean cluster analysis method and a hierarchical 

cluster analysis with Ward’s method. The comparison shows that categories 

constructed by the proposed mathematical programming approach are more 

homogenous than the categories obtained by other methods..
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1. Introduction 

 

Tropical cyclones (TCs) are one of the most destructive types of natural hazard 

that occur in the tropical South Pacific (TSP) region on an annual basis, often 

causing severe problems for the socio-economic and environmental sectors of 

developing island nations.  More than half the population of the TSP region lives 

at or near the coast, making such communities highly vulnerable to the damaging 

effects of TC events. River flooding, storm surge, landslides, strong winds, heavy 

rainfall and coastal erosion during intense TCs can destroy properties and claim 

the lives of people and livestock. For example, TC Tomas was an intense cyclone 

that struck Fiji in 2010, destroying many homes with strong winds and storm 

surges (Etienne & Terry, 2013). In 1987 TC Uma struck Vanuatu, claiming 48 

lives, with costs of damage estimated to approximately USD25 million (UN, 

2009). In consequence, improving scientific understanding of patterns in TC 

formation and migration is a continual task, as this helps in disaster plannng to 

minimise the human and economic losses inflicted by these powerful storms. 

In this study, the focus is on categorising TC track shape. TCs tend to display 

various track shapes from relatively straight tracks to curving types. More 

complex shapes may display single or multiple loops. By analysing track shapes 

and trajectories, other workers have been able to assign TC tracks into well-

defined groups or clusters. For typhoons in the North West Pacific, Elsner & Liu 

(2003) used the K-means clustering method to establish three clusters: straight-

moving, recurving and north-oriented tracks, while Camargo et al. (2007) 

successfully used a probabilistic clustering technique based on a regression 

mixture model. 

Another way to quantify TC track shape is to use the metric of track sinuosity, as 

recently developed and applied in various ocean basins (Terry & Feng, 2010; 

Terry & Gienko, 2011; Terry et al., 2013). Track sinuosity refers to how much a 

TC ‘meanders’ during its lifespan compared to the straight distance between its 

genesis and decay position. Using this system, a perfectly straight-moving TC 

has a sinuosity value of 1 (the minimum possible value), with sinuosity values 

increasing as tracks display more curvature. Using sinuosity values, those authors 

were able to organise TCs tracks into quartile-range sinuosity groups of 

equivalent size. This works well for a rapid assessment. However, one possible 

drawback of this approach is that quartile-range groups are unlikely to be 

homogenous or comparable in terms of their statistical properties. Placing TCs 

into homogenouous groups that is statistically more robust, which may be 
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desirable for better comparison and prediction of TC behavoiur across sub-

regions where they occur.  

In this paper, we propose a mathematical programming technique for 

categorising TC tracks according to their sinuosity, based on a robust method that 

can provide greater homogeneity within groups. The objective is to group 

cyclones into five categories in order to have a central category with data points 

below representing generally straighter-moving cyclones and those above 

representing more sinuous tracks. The problem is formulated as a nonlinear 

programming problem, which is solved by developing an algorithm using a 

dynamic programming technique (DPT). 

 

2. Study Area and Data Collection 

 

TC track analysis was carried out on data over the period 1969/70 to 2007/08 for 

39 cyclone seasons in the study area between 0–25°S and 160°E–120°W, as 

shown in Figure 1.   

 

 
Figure 1: Map of study area showing all cyclone tracks during 1969/70 - 

2007/08 cyclone seasons; n=291. 

 

The study period represents the modern era of satellite-based TC observations. 

The primary data sources are the Fiji Meteorological Service (FMS) and the 

Tropical Cyclone Warning Centre (TCWC) in New Zealand. Analysis 

concentrated on the portion of tracks for which TCs were in their mature phase, 

i.e. with maximum sustained wind speed of 35 knots and above. Portions of 
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tracks during weaker stages in the early and late life of systems (i.e. depression 

stages) while winds remained below 35 knots were not included.  The dataset 

records 6-hourly TC center locations and intensities, thus enabling tracks to be 

plotted within GIS by joining the recorded positions. Altogether 291 cyclones 

either formed or passed through the study area at some point of their lifespan. 

TC track shape was quantified according to track sinuosity index (SI) values 

based on Terry & Gienko, (2011).  SI values are calculated from the formula 

below: 

3SI = –1 10S   

Where the sinuosity (S) of an individual TC track is calculated as: 
 

TC total travel distance

Straight-line displacement from TC genesis to TC decay p
S =

oint
 

 

There are several advantages of using SI-values over S-values for quantification 

of TC track shape. Skew in the output dataset is reduced. SI-values have an 

absolute minimum of 0 (zero). This is preferable for straight-tracking storms, 

rather than a minimum absolute S-value of 1 (unity). TC genesis points with 

corresponding SI-values can also be mapped for visualization, as in Figure 2. 

Three extreme values (SI > 14) are identified as outliers and therefore excluded 

from further analysis. 

 

 
Figure 2: TC genesis points and corresponding track sinuosity index (SI) 

values in the TSP region; n = 291. 
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3. Methods for Track Categorization 
 

3.1 K-Means Cluster Analysis: 

K-means cluster is a widely-used nonhierarchical clustering method (Steinhaus, 

1957; Lloyd, 1982).  For n data points, if K clusters 
1( ,..., )KC C  are to be formed 

with maximum cluster homogeneity, then the clusters are so formed that the data 

points within a cluster are similar to one another and dissimilar to data points in 

other clusters.  In other words, if ip C be a data point and iM  be the mean of 

the cluster iC , then the clusters are determined in such a way that the sum of 

squared distance between all data points in iC  and the mean iM  is maximum, 

that is, 

   Maximize 
2

1

( , ) ; 1,2,...,
i

K

i

i p C

d p M i K
 

  

 

Or, the clusters are so formed that the sum of the distance between means of all 

clusters is minimum, that is, 

 

Minimize and( , );    
K

i j

i j

d M M i j


          (3.1) 

Where, ( , )d x y  is the Euclidean distance between two points x and y; and iM  

and jM  are the means of the i
th
   and j

th
 cluster, respectively. 

This method tries to make the resulting K mutually exclusive and spherical 

shaped clusters as compact and as separate as possible (see Han et al., 2012, 

Chapter 10). 

 

3.2  Ward's Hierarchical Cluster Analysis: 

Another important cluster analysis method is the method of Ward (1963).  This is 

a hierarchical clustering method.  If K clusters 
1( ,..., )KC C are to be formed and 

ijx  ( 1,2,...,i K , 1,2,..., ij t ) is the value of the j
th
 data point of cluster 

iC  

containing 
it  data points, and 

iM  is the mean of i
th
 cluster, then this method 

determines the cluster in such a way that it minimizes the sum of the square of 

the deviation, that is, 

http://en.wikipedia.org/wiki/Hugo_Steinhaus
http://en.wikipedia.org/wiki/Hugo_Steinhaus
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Minimize   
2

1 1

itK

ij i

i j

E x M
 

  .        (3.2) 

Basically, the method resembles an analysis of variance problem, instead of 

using distance metrics.  It involves an agglomerative clustering algorithm, which 

uses a bottom-up strategy.  It starts with individual data points as clusters, which 

are iteratively merged to form larger clusters.  At each step of the algorithm 

clusters are combined in such a way as to minimize the sum of the square of the 

deviation (see Han et al., 2012, Chapter 10).   

 

3.3 Proposed Mathematical Programming Technique 

In Section 3.1 and 3.2, we outlined two cluster analysis techniques, namely, K-

means and Ward’s Hierarchical methods. Although, the K-means method is 

effective for small to medium size datasets, optimizing the within-cluster 

variation is challenging for the technique. It becomes worse when the techniques 

encounters a number of possible partitioning that are exponential to the number 

of clusters and checking the within-cluster variation values. It has been seen that 

the problem is NP-hard for a general number of clusters even in two-dimensional 

Euclidean space. The technique also has computational difficulties to achieve 

global optimum. Instead, it progressively improves the clustering quality and 

approaches a local minimum (Han et al., 2012). On the other hand, the 

hierarchical clustering method encounters difficulties while merging the data 

points. The technique may lead to low-quality clusters, if the data points are not 

well chosen for merging as it cannot correct the erroneous merges. Another 

problem in both techniques is that the clustering can be sensitive to outliers, 

given that outlying objects will tend to have large pairwise distances to other 

objects and greatly influence the progression of the hierarchical algorithm.   

To overcome these problems in clustering we propose a mathematical 

programming technique that considers a functional form of the data points. The 

functional form of data consists of observations, which is intrinsically a 

continuous function of the responses.  This can be done by converting the 

discretely observed data into a continuous frequency function via a smoothing 

method. The proposed clustering method uses a dynamic programming technique 

to determine the arbitrarily shaped clusters within which data points are alike as 

much as possible.  

If a variable x  is to be classified into K mutually-exclusive and homogeneous 

clusters and ( )f x  denotes frequency function of  0 Kx x x x  , the 

optimum cluster boundaries are obtained by determining the optimum widths of 
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the clusters. This is achieved by cutting the range 0Kd x x   of the distribution 

at optimum boundary points.  The problem of determining optimum cluster 

widths is formulated as a Nonlinear Programming Problem (NLPP) that 

minimizes the variances within the clusters. The NLPP is then solved by 

developing a dynamic programming technique (DPT).   

If the NLPP is a multistage decision problem in which the objective function and 

the constraint are separable functions of cluster widths, then a DPT may be used 

to solve the problem (Khan et al., 2008). DPT determines the optimum solution 

of a multi-variable problem by decomposing it into stages, each stage 

compromising a single variable subproblem. A dynamic programming model is 

basically a recursive equation based on Bellman's principle of optimality 

(Bellman, 1957). This recursive equation links the different stages of the problem 

in a manner which guarantees that each stage's optimal feasible solution is also 

optimal and feasible for the entire problem (Taha, 2007). The use of DPT in 

various applications, especially for clustering and grouping, can be found in 

Bellman (1973), Wang & Song (2011) and Nielsen & Nock (2014). The 

proposed method of clustering based on track SI-values is illustrated as follows:   

Let N tropical cyclones (TCs) with SI-values ( x ) be classified into K mutually-

exclusive and homogeneous categories comprising ; ( 1,2,..., )hN h K units in 

the h
th
 category so that:  

1 2 ... KN N N N     

and the variance of the sinuosity index within the category is as minimum as 

possible.  That is, in order to make the categories internally homogenous, the 

categories should be constructed in such a way that the variances of the 

categories be as small as possible. A reasonable criterion to achieve such 

optimum categories is as follows. 

Let x0
 and Kx  be the smallest and largest values of sinuosity index ( x ) 

respectively, and  1 2 1, ,..., Kx x x   denotes the set of intermediate optimum 

boundary points of the categories.  If hix  are the values of sinuosity index of the 

i th
 TC that falls in h th

 category, then the problem of optimum categorization can 

be described as to find the intermediate category boundaries 1 2 1,..., Kx x x     

such that the sum of weighted variance due to the categorization, that is,  
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2

1

K

h h

h

W 


           (3.3) 

is minimum. 

 

Where,  h
h

N
W

N
 = the proportion of cyclones that falls in h th

 category, 

 
2

2 1

hN

hi hi
h

h

x

N


 





= the variance of h th
 category, and 

 1

hN

hii
h

h

x

N
 


= the mean of h th

 category. 

It should be noted that hN  and hix  are unknown as the categories are yet to be 

constructed. Further, the problem is to determine the best boundaries that make 

categories internally homogeneous by minimizing (3.3), which is not a function 

of boundary points.  Therefore, a way to achieve the optimum boundary points 

effectively is, if (3.3) can be expressed as the function of boundary points which 

is possible when the distribution of sinuosity index known and then creating 

categories by cutting the range of the distribution at suitable points. 

Let ( )f x  denotes frequency function of the sinuosity index ( x ). Then the 

values of weights Wh
 and the variance 

2

h  of h th
 category are obtained as the 

function of boundary points  1,h hx x  by 

    W f x dxh

x

x

h

h





 ( )

1

         (3.4) 

     h

h x

x

h
W

x f x dx

h

h

2 2 21

1

 



 ( )         (3.5) 

Where, 

     h

h x

x

W
xf x dx

h

h






1

1

( )          (3.6) 
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Therefore, when the frequency function ( )f x  is known and is integrable, using 

the expressions (3.4)-(3.6), the function 
2

h hW   in (3.3) can be expressed as a 

function of the boundary points  1,h hx x . 

Let 
2

1( , )h h h h hf x x W          

     

Thus, the problem of determining the optimum boundaries can be rewritten as: 

 

“Find 1 2 1, ,..., Kx x x   which minimizes 
1

1

( , )
K

h h h

h

f x x 



 , subject to the constraints 

0 1 2 1,..., K Kx x x x x     ”. 

 

Define,  1h h hl x x     

 

That is, hl  denotes the width of the h th
 ( 1,2,...,h K ) category. 

 

With the above definition of hl , the range of the distribution is expressed as 

 

          1 0

1 1

K K

h h h K

h h

l x x x x d

 

       

 

The k th
 boundary point xk ; 1,2,..., ( 1)k K   is then expressed as:  

 

        
0 1 2

1

.......k k

k k

x x l l l

x l

    

 
 

Then, the problem of determining optimum category boundaries can be 

considered as the problem of determining optimum category widths and could be 

expressed as the following Nonlinear Programming Problem (NLPP): 

 

  

 1

1

1

Minimize ,

subject to ,

and 0; 1,2,..., .

K

h h h

h

K

h

h

h

f l x

l d

l h K












 

 





        (3.7) 
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For 1h  the term  1 1 0,f l x  in the objective function of (3.7) is a function of 1l  

alone, as x0  is known.  Similarly, for 2h   the term 

   2 2 1 2 2 0 1, ,f l x f l x l   will become a function of 2l  alone once 1l  is 

known.  Thus, stating the objective function as a function of hl  alone we may 

rewrite the NLPP (3.7) as: 

  

 
1

1

Minimize

subject to ,

and 0; 1,2,..., .

K

h h

h

K

h

h

h

f l

l d

l h K










 

 





         (3.8) 

 

4. The Solution Procedure using Dynamic Programming Technique 
 

The problem (3.8) is a multistage decision problem in which the objective 

function and the constraint are separable functions of hl , which allows us to use 

a dynamic programming technique (see Khan et al., 2008).  

 

Consider the following subproblem of (8) for first ( )k K  category. 

  

 
1

1

Minimize

subject to ,

and 0; 1,2,..., .

k

h h

h

k

h k

h

h

f l

l d

l h k










 

 





         (4.1)  

where d k < d  is the total width available for division into k  category. 

Note that d k = d  for k K  

Let f k dk( , ) denotes the minimum value of the objective function of (4.1), that 

is, 

   
1 1

, min , and 0; 1,2,...,
k k

k h h h k h

h h

f k d f l l d l h k
 

 
    
 

        (4.2) 
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With this definition of  , kf k d  the NLPP (3.8) is equivalent to  ,f K d , 

which can be obtained by finding  , kf k d  recursively for 1,2,...,k K  and 

for all feasible 
kd , that is, 0 kd d  . 

(4.2) can be written as 

     
1 1

1 1

, min , and 0; 1,2,...,
k k

k k k h h h k k h

h h

f k d f l f l l d l l h k
 

 

  
       

  
 

For a fixed integer value of kl ,  , kf k d  is given by 

     
1 1

1 1

, min , and 0; 1,2,..., 1
k k

k k k h h h k k h

h h

f k d f l f l l d l l h k
 

 

 
       

 
                (4.3) 

By the definition (4.2), the quantity inside    in (4.3) is  1, k kf k d l  . 

Thus the required recurrence relation of the Dynamic Programming thus be given 

as: 

     
0

, min 1,
k k

k k k k k
l d

f k d f l f k d l
 

             (4.4) 

At the final stage of the solution i.e. at k K , ( , )f K d  is obtained by solving 

(4.4) recursively for all kd . From ( , )f K d  the optimum value 
*

Kl  of Kl  is 

obtained, from 1( 1, )Kf K d   the optimum value 
*

1Kl   of 1Kl   is obtained and so 

on until finally we obtain the optimum value 
*

1l  of 1l . 

 

5. Analysis 

 

5.1 Distribution of Sinuosity Index Values 

A probability - probability (P-P) plot of sinuosity index ( x ) is obtained to 

determine whether the distribution of x matches a particular distribution. Figure 

3 shows that x  matches the gamma distribution as the points cluster around a 

straight line.  

Also Kolmogrov-Smirnov test (D = 0.0375, p-value = 0.8212) and the relative 

frequency histogram shown in Figure 4 reveal that x  is assumed to follow 

Gamma distribution with a probability density function given by 

  11
; 0; , 0

( )

x

r

r
f x x e x r

r
 




  


.        (5.1) 

 

http://en.wikipedia.org/wiki/Probability_density_function
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Figure 3: Gamma P-P plot for sinuosity index values (x) of TC tracks; n = 288. 

 

 

 
Figure 4: Frequency distribution of sinuosity index of TC tracks; n = 288. 

 

Where r is the shape parameter and   is the scale parameter of the distribution, 

and ( )r  is a Gamma function defined by: 

1

0
( ) , 0r tr t e dt r


    .         (5.2) 
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The function in (5.2) is also defined by an upper incomplete gamma function 

( , )r x  and a lower incomplete gamma function ( , )r x , respectively, as 

follows: 

  
1( , ) r t

x
r x t e dt


              (5.3) 

  
1

0
( , )

x
r tr x t e dt                   (5.4) 

There also exist regularized/normalized incomplete gamma function, which give 

a value restricted between 0 and 1 and can be stated as: 

  
11

( , ) , , 0; ( ) 0
( )

r t

x
Q r x t e dt r x r

r


    

        (5.5) 

  
1

0

1
( , ) , , 0; ( ) 0

( )

x
r tP r x t e dt r x r

r

    
  ,      (5.6) 

where ( , )Q r x  denotes the upper regularized incomplete gamma function and 

( , )P r x  denotes the lower regularized incomplete gamma function. Note that 

( , ) 1 ( , )Q r x P r x  . 

5.2 Estimate of the Distribution Parameters 

Using the maximum likelihood estimate (MLE) method for the sinuosity index 

data, the parameters of Gamma distribution given in (5.1) are found to be: 

Shape, r̂  =3.822976 and  scale, ̂ =1.351949      (5.7) 

 

5.3 Determination of Optimum Category 

Using (3.4), (3.5), (3.6), (5.3) and (5.5) we obtain hW , h  and 2

h  as follow: 

1, ,h h

h

x x
W Q r Q r

 


    
     

    
         (5.8) 

Note that from the definition of  
h

l , 

1h h h
x x l


  .           (5.9) 

Thus, 

1 1, ,h h h

h

x x l
W Q r Q r

 
 

    
     

    
                  (5.10) 

Similarly, 
h

  is obtained as 
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1 1

1 1

1, 1,

, ,

h h h

h

h h h

x x l
r Q r Q r

x x l
Q r Q r


 


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and 2
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  is reduced to 
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(5.12) 

Therefore, from (5.10) and (5.12), the expression (3.3) reduces to 
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(5.13) 

Then, using (5.13), the NLPP (3.8) to determine the optimum widths hl  and 

hence the optimum boundary points  1,h hx x of the categories could be 

expressed as: 
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(5.14) 

Where, d  is the known constant, that is, the range of the sinuosity indexes: 

0 12.1561 0 12.1561Ld x x     . 

and the values of r  and   are the parameters of the distribution of sinuosity 

index given in (5.7). Substituting the values of d , r  and  , the NLPP (5.14) is 

expressed 
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as:
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Then, the recurrence relation (4.4) of the Dynamic Programming reduces to: 
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(5.16) 

Note that the  1h th boundary point 1kx   is obtained by 
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Where kd  is the total range or width of first k  strata. 

Substituting this value of  1kx  , the recurrence relation (28) becomes 
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(5.17) 

6. Results and Discussion 

 

Solving the recurrence relation (5.17), the optimum category widths 

; ( 1,2,..., )hl h K  and hence the optimum category boundaries 1h h hx x l   are 

achieved by executing a C++ computer program coded for the proposed 

algorithm discussed above. In previous work (Terry & Feng, 2010) TCs were 

categorized in four categories: straight – quasi-straight – curving – sinuous. The 

technique works well for rapid categorization and assessment.  However, where 

statistically homogenous groups may be required for detailed analysis, it is 

proposed to develop this quartile-based technique further by introducing a central 

category and refining descriptive names as follows: straight – near straight – 

curving – sinuous – convoluted. If five categories are to be formed, that is 

5K  , then the proposed method using technique gives the optimum boundary 

points for each category for Problem (5.15) as shown in Table 1: 

Table 1: Five categories using the proposed dynamic programming 

approach. 

Category 

 ( h ) 

Width 

( hl ) 

Sinuosity 

Index Values 

 1,h hx x  

No. of 

cyclones  

( hN ) 

Weight 

( hW ) 

Variance 

(
2

h ) 

Weighted 

Variance 

(
2

h hW  ) 

1 2.9648 0 – 2.9395 67 0.2326 0.7870 0.1831 

2 1.5138 2.9738 – 4.4344 68 0.2361 0.2085 0.0492 

3 1.6310 4.4814 – 6.0605 65 0.2257 0.1934 0.0437 

4 2.1214 6.1287 – 8.1613 53 0.1840 0.3380 0.0622 

5 3.9251 8.2947 – 

12.1561 

35 

0.1215 1.2161 0.1478 

 N = 288*  

2

h hW  = 

0.4860 

* Table 1 includes 288 cyclones after elimination of three cyclones as outliers. 

In order to investigate the effectiveness of the proposed categorization method, 

we compare the results obtained by the following three methods:  

1. A proposed method using a dynamic programming technique. 

2. K-Means cluster analysis method (see Steinhaus, 1957; Lloyd, 1982). 

3. Hierarchical cluster analysis method with Ward’s method (see Ward, 

1963). 

Using SPSS, five homogeneous categories of cyclones were determined based on 

sinuosity index values for the K-Mean and Ward’s methods and the results are 

http://en.wikipedia.org/wiki/Hugo_Steinhaus
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shown in Table 2 and 3. The variance of each category and the sum of the 

weighted variance are also presented.   

 

Table 2: Five categories using K-Mean cluster analysis. 

Category 

( h ) 

Sinuosity 

Index 

( x ) 

No. of 

cyclones  

( hN ) 

Weight 

( hW ) 

Variance 

(
2

h ) 

Weighted 

Variance 

(
2

h hW  ) 

1 0 – 2.9738 68 0.2361 0.7914 0.1869 

2 0.0037-5.0093 95 0.3299 0.3381 0.1115 

3 5.0723-7.2023 71 0.2465 0.4136 0.1020 

4 7.2748-9.5119 43 0.1493 0.5091 0.0760 

5 10.3605 – 

12.1561 
11 

0.0382 0.3692 0.0141 

 

 N = 288   

2

h hW  = 

0.4905 

 

Table 3: Five categories using Ward’s hierarchical cluster analysis. 

Category 

( h ) 

Sinuosity 

Index 

( x ) 

No. of 

cyclones  

( hN ) 

Weight 

( hW ) 

Variance 

(
2

h ) 

Weighted 

Variance 

(
2

h hW  ) 

1 0-1.5605 18 0.0625 0.3138 0.0196 

2 1.5605-3.9192 85 0.2951 0.3489 0.1030 

3 3.9812-5.0093 60 0.2083 0.0936 0.0195 

4 5.0723-7.2748 72 0.2500 0.4279 0.1070 

5 7.3846-

12.1561 
53 

0.1840 1.6523 0.3041 

 

 N = 288   

2

h hW  = 

0.5532 

From the Tables 1-3, the results show that all the categories except Category 5 in 

the proposed method produce smaller variance as compared to K-Mean method. 

Whereas, Categories 2, 4 and 5 in proposed method have smaller variances as 

compared to Ward’s method. Moreover, the sum of weighted variance (0.4860) is 

also smaller for the proposed method as compared to K-Mean (0.4905) and 

Ward’s (0.5532) methods.  

Table 4 summarizes the sum of weighted variance  2

h hW   of each method and 

presents the percentage of gain in relative efficiency of the proposed method over 
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others. It reveals that the percentage of gain in relative efficiency of the proposed 

method over the K-Mean and Ward methods is 0.93% and 13.83%, respectively. 

Table 4: Percentage of Gain in Relative Efficiencies (R.E) of the proposed 

method 

Method Weighted sum of 

variance ( 2

h hW  ) 

% gain in R.E. of 

proposed method 

K-Mean  

Ward’s 

Proposed 

0.4905 

0.5532 

0.4860 

0.93% 

13.83% 

- 

 

In interpreting the results from a geographical point of view, Ward’s approach 

places boundaries in the way that the last category significantly outweighs any of 

the first four. Thus, one would also expect that the majority of TCs will be in the 

first three categories (straight, near straight, and curving), but this is not the case 

with Ward’s method. K-means seems to perform better in both aspects of 

categorization: placing boundaries of classes with a well-balanced distribution of 

the number of TCs across the range of five categories. While the fifth category is 

wider in the K-means’ method, the proposed dynamic programming method 

probably gives the most homogeneous, “natural” distribution of the number of 

TCs in each category. 

On the basis of these comparisons, it can be concluded that categorization using 

the proposed mathematical programming technique is a more efficient approach. 

Table 5 suggests suitable names for the five categories along with the outlier 

category.  The number and the percentage of TCs that fall into each category are 

also presented. 

Table 5: Descriptions of the categories based on sinuosity index values. 

Categories TCs with 

Sinuosity Index 

No. of 

TCs 

Percentage 

of TCs 

Description 

1 0-2.9648 67 23.3 Straight Tracks 

2 2.9648-4.4786 68 

23.6 

Near Straight 

Tracks 

3 4.4786-6.1096 65 22.6 Curving Tracks 

4 6.1096-8.2310 53 18.4 Sinuous Tracks 

5 8.2310-12.1561 35 

12.1 

Convoluted 

Tracks 

6 14.9714, 15.1886 

and 37.2637 

3  Extreme 

Sinuous Tracks 

(Outlier) 
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Based on our designated categories (Table 5), maps can be plotted in order to 

visualize simultaneously both TC genesis and track type as shown in Figures 4 

(a)-(e). The maps reveal that a clear geographical contrast exists between 

Categories 1&2 and Categories 4&5. TCs in first two categories (straight and 

near straight tracks) are distributed fairly evenly between 160°E to 130°W. TCs 

in Categories 4&5 (sinuous and convoluted tracks) are generally limited to the far 

west of the study area, mainly between 160°E to 180°. Such information is 

important for regional agencies tasked with hazard observation and disaster 

preparedness planning. It reveals in particular that island groups located in the 

geographical west of the tropical South Pacific are more likely to experience TCs 

that follow tracks with a larger amount of meandering and complexity. Such TCs 

pose a greater degree of difficulty for forecasters in terms of predicting 

movement and trajectories in real time than TCs which move along straighter 

paths, and therefore may require greater scrutiny as they evolve and mature. 

 

 

 
Figure 4(a):  Category 1 - tropical cyclone with straight track. 
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Figure 4(b):  Category 2 - tropical cyclone with near straight track. 

 

 

 

 

 

 

 

 
Figure 4(c):  Category 3 - tropical cyclone with curving track. 
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Figure 4(d):  Category 4 - tropical cyclone with sinuous track. 

 

 

 

 

 

 

 
Figure 4(e):  Category 5 - tropical cyclone with convoluted track. 
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7. Conclusion 

 

According to the IPCC (2012), continued use of climate models to make 

projections of tropical cyclone behavior (in terms of frequency, location, 

intensity, rainfall and movement) remains a high priority for Pacific region. 

Improved understanding in predicting tropical cyclone behavior is important for 

better preparedness before, during and after TC events. 

In this paper, a total of 291 tropical cyclones occurred in the Southwest Pacific 

over 39 seasons from 1969/70 to 2007/08 was analyzed. The linear shape of the 

tracks of these TCs was quantified using a dimensionless metric based on an 

existing method for measuring track sinuosity (S), which determines how much 

an individual track deviates from a straight line between cyclone genesis and 

decay points. Sinuosity index (SI) values calculated from measured S-values 

reduces skew in the dataset and fixes the absolute minimum value to zero, which 

is preferable for straight tracks. A Gamma distribution was found to provide the 

best fit to the SI data. 

The major aim of the paper was to develop a new robust method to categorize 

TCs into groups based on their track sinuosity properties. Five homogeneous 

categories were formed using a mathematical programming approach to obtain 

optimum boundary points for each category. These five categories contain 288 of 

the total 291 TC tracks measured (excluding three outliers). When comparing the 

efficiency of our proposed categorization method against two well-known 

alternative clustering methods, our method was found to be more efficient.  Thus, 

when a robust method is required that forms groups with a high degree of internal 

homogeneity (e.g. for comparison across sub-regions where TCs occur), the 

proposed mathematical programming method appears to perform better than 

other clustering techniques.  
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