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ABSTRACT 

 

Probit and logit models are two commonly used techniques for regressing 

certain independent variables on a dichotomous dependent variable. 

Through this paper we propose an alternative regression model to the 

probit and logit models, based on the generalized logistic distribution of 

Balakrishnan and Leung (Communications in Statistics - Computation and 

Simulation, 1988). We discuss the maximum likelihood estimation of the 

parameters of the model and illustrate its usefulness with the help of a real 

life data set.  

1. Introduction 
 

Probit and logit models are two commonly used techniques for regressing certain 

independent variables on a dichotomous dependent variable when the categories 

are assumed to reflect an underlying normal/logistic distribution of the dependent 

variable. The probability distribution of both these models is symmetric. But, in 

practice, there are several situations where asymmetry arises in the distributional 

pattern of the dependent variable. In such cases, the assumption of symmetry of 

the probit and logit models violates and there by these procedures become 

inappropriate. So through this paper, we propose a generalized logit model based 

on type II generalized logistic distribution of Balakrishnan and Leung (1988). 

They defined the distribution as follows: 
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A continuous random variable Z  is said to follow “the type II generalized 

logistic distribution (GLDII)” if its probability density function (p.d.f) is of the 

following form, for any   ),( Rz  and 0c . 

    )1(
1;

 
czcz ececzf            (1.1) 

The cumulative distribution function (c.d.f) of the GLDII with p.d.f (1.1) is the 

following, for any ).,( Rz  

  czcz eezF
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(1.2)                

Note that the GLDII is an asymmetric distribution, and a regression model based 

on this distribution will be capable for tackling the asymmetric distributional 

pattern of the dependent variable. So through this paper we propose a generalized 

logit model based on the GLDII. 

The rest of the paper is organized as follows. In section 2 we describe the probit 

and logit models and in section 3 we present the definition and some important 

properties of the GLDII. In section 4 we consider the estimation of the parameters 

of the proposed generalized logit model and in section 5 a real life data 

application is considered for illustrating the usefulness of the model compared to 

the existing models. A generalized likelihood ratio test procedure is also 

suggested for testing the significance of the additional parameter c  of the 

generalized model and a brief simulation study is conducted in section 5.  

 

2.  Probit and Logit Models 

 

The probit models were introduced in the mid 1930s in toxicology studies and 

the idea of probit analysis was originally due to Chester Ittner Bliss in 1934 

(Agresti, 2007). In some situations we need a regression model which will 

predict the response probabilities ip , say )1( iYP of the dependent variable 

iY . The dependent random variable 
iY  is assumed to be binary taking values, 

say 0 and 1. That is, }1,0{iY , for each ni ,..,.2,1 . The outcomes on Y are 

assumed to be mutually exclusive and exhaustive, and assumed to depend on 

k observable variables .,...,, 21 kXXX  
We can indicate this relationship 

by writing ),,...,,|1( 21 kXXXYPp   or simply )|( XYPp  where 

X  denote a set of k  independent variables. It is assumed that no exact or near 

linear dependencies exist among these  k  independent variables. The link 
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function for the model, called the probit link function, transforms probabilities to 

z-scores from the standard normal distribution. The probit link function 

transforms p  so that the regressions curve for p  or for p1  has the 

appearance of the normal c.d.f. The probit link function applied to p  gives the 

standard normal z-score at which the left tail probability equals p . The model 

can be represented as  

,...)( 2211
1

kk XbXbXbaZp                              (2.1) 

where p  is the proportion and  is the c.d.f of the standard normal 

distribution. .
2

1
)( 2

2

duezp

u
z






                             (2.2) 

The logistic regression models were not in much use until 1970s but they are now 

more popular than the probit model in several application studies (Agresti, 2007). 

The shape of the logistic distribution, similar to that of the normal distribution 

but with slightly thicker tails, makes it simpler and also more appropriate in 

certain occasions. In such cases, the model can be represented as in the 

following, in which ).,( Rz  

1)1(  zep ,                                 (2.3) 

which shows a smooth S-shaped curve  symmetric about the point 0z and 

such a  characteristic of the function  make it an attractive alternative to the linear 

probability model for dichotomous dependent variables. 

 

3.  The Generalized Logit Model 

 

An important drawback of standard logit model is that it is not suitable for 

asymmetric distributional patterns. In most of the practical situations, the data 

may not be symmetric. Since the GLDII with c.d.f (1.2) is a skewed one, based on 

this distribution, we propose a generalized logit regression model through the 

following representation, in which Rz  and 0c . 

czcz eep   )1(1                                              
(3.1) 

From Balakrishnan and Hossain (2007), it can be noted that the generalized 

logistic distribution with p.d.f (1.1) is negatively skewed when 1c and 

positively skewed when 1c . Also, its skeweness measure can be viewed as a 
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decreasing function of  .c  If the value of c tends to infinity, the GLDII has 

‘heavier tails’ than the normal distribution. 

Analogous to Aldrich and Nelson (1984), we describe the estimation of the 

parameters of the generalized logit regression model by method of maximum 

likelihood as follows: For ni ,..,.2,1 ,  let  

czcz
iii eeXYPp   )1(1)|1( ,            (3.2) 

                

 

where 
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k
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                (3.3)                                                                                             

Thus 
iii pXYP  1)|0( and the probability of observing outcome iY , 

whether it be 0 or 1 is given by  
ii Y

i

Y

iii ppXYP



1

)1()|( .
 

The probability of observing a particular sample of n values of  Y , say Y, given 

all n sets of values of iX , say X, is given by the product of the ‘n’ probability 

expressions as given below, since the observations are independent.  

            

ii Y
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1

)1()( |
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Let ),,...,,,( 21 cbbba k be the vector of parameters of the generalized logit 

regression model and let )ˆ,ˆ,...,ˆ,ˆ,ˆ(ˆ
21 cbbba k be the maximum likelihood 

estimator (MLE) of  . Since )|( XYP depends on   , we can write the log- 

likelihood function );|(log zyL  
as given below, in which z  is as defined in 

(3.3). 
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(3.5)
 

Now, the MLE of the parameters are obtained by solving the following set of 

likelihood equations, in which  
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or equivalently 
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or equivalently 
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for each .,...,2,1 kj   Since the likelihood equations as given in (3.6) to (3.8) do 

not have a solution, the maximum of the log-likelihood equation is attained at the 

border of the domain of the parameters. So we obtained second order partial 

derivatives of (3.5) with respect to the parameters and we observed, with the help 

of MATHEMATICA software that the equation give negative values for 

all Ra , Rb and 0c . Hence the MLE of the parameters are unique 

under these parametric restrictions (Puig, 2003). Thus, one can obtain the value 

of ̂  by solving the likelihood equations (3.6) to (3.8) with the help of the 

mathematical software MATHEMATICA. 

  

4.   An Application 

 

For numerical illustration of the procedures discussed in the above section, we 

consider the “Prostrate cancer data set” available in https://www.umass.edu/ 

https://www.umass.edu/%20statdata/statdata/
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statdata/statdata/. This is also used by Hosmer and Lemeshow (2000). Among the 

380 patients 153 had tumor that penetrated the prostatic capsule. The variable 

capsule denotes the status of the tumor, whether it has penetrated or not, which is 

considered as the dichotomous outcome variable and Prostatic Specimen 

Antigen Value (PSA) in mg/ml as the exogenous variable. Here we consider the 

simplest case involving one exogenous variable so that our model (3.3) reduces 

to bxaz  . We obtained the MLEs of the parameters a , b  and c of the 

generalized logit regression model by using the maxLik package in R software 

which involves the Newton–Raphson optimization procedure (Henningsen and 

Toomet, 2011). MaxLik package is a function with the same name maxLik. This 

function has two mandatory arguments, logLik and start. The first argument 

(logLik) is the function that calculates the log-likelihood value as a function of 

the parameter (usually parameter vector). The second argument (start) is a vector 

of starting values. This function returns the log-likelihood value, estimated values 

of the parameters, standard errors and p-values.  

For comparisons, we consider the existing tools - probit and logit models, and 

estimated the parameters a  and b  of both these models by maximum likelihood 

estimation method. The computation results obtained in case of each of the 

models along with the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) as a measure of the goodness of fit are presented in 

Table1. Also, we have plotted the empirical cumulative distribution of the data 

set along with the respective models in Figure 1. From Table 1 and Figure 1 it 

can be observe that the generalized logit model gives better fit to the data set 

compared to the standard models in the literature- logit and probit models.           

 

Table 1: Estimated values of the parameters and the corresponding value of the 

AIC and BIC for the different models. 

 

Model 
   

AIC 

 

BIC 

Probit -0.677 0.029 -- 467.350 468.516 

 

Logit 

 

-1.114 0.050 -- 467.161 468.320 

Generalized logit 

 

43.990 7.518 0.004 464.071 465.810 
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Figure 1:  Empirical distribution of the data set along with fitted regression 

models- probit, logit, generalized logit models 

 

5. Testing of  Hypothesis and Simulation 

 

In this section we discuss the generalized likelihood ratio test procedure for 

testing the hypothesis 1:0 cH against the alternative hypothesis 1:1 cH and 

attempted a brief simulation study. Here the test statistic is, 

             )]|;ˆ(log)|;ˆ([log2log2 * xyLxyL                                         (5.1) 

where ̂  is the maximum likelihood estimator of  ),,( cba  with no 

restriction, and is *̂  the maximum likelihood estimator  of   when 1c . The 

test statistic  log2
 
given in (5.1) is asymptotically distributed as χ

2 
with one 
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degree of freedom (Rao, 1973). The computed values of )|;ˆ(log xyL  is -

255.462, )|;ˆ(log * xyL   is -260.503 and the value of test statistic is 10.082. 

Since the critical value at the significance level 0.05 and degree of freedom one 

is 3.84, the null hypothesis is rejected. Hence it can be concluded that the 

generalized logit model is more appropriate to the asymmetric data set 

considered in this paper. In order to assess the performance of the MLEs of the 

parameters of the generalized logistic regression model, we have conducted a 

brief simulation study based on values of the following set of parameters,  

004.0,518.7,99.43  cba . Here we utilized the inverse transform 

method of Ross (1997) for generating random numbers. The computed values of 

bias and mean square error (MSE) corresponding to sample sizes 100, 200 and 

300 respectively are given in Table 2. 

 

   Table 2:  Bias and Mean square error of each of the parameters of the 

simulated data sets 

 

Sample  

size 

Bias MSE 

a b c a b c 

 

100 

 

-

0.05714 

 

-

0.00344 

 

0.06530 

   

0.01681 

 

0.00019 

 

0.03246 

 

200 

 

0.02100 

 

-

0.00160 

 

0.04371 

 

0.01515 

 

0.00013 

 

0.02235 

 

300 

 

0.00831 

 

-

0.00045 

 

0.00921 

 

 

0.01075 

 

0.00007 

 

0.00800 

 

 

From Table 2 it can be seen that both the absolute bias and MSEs in respect of 

each parameters of the generalized logit model are in decreasing order as the 

sample size increases. 

 

Concluding Remarks 
 

The paper introduces the concept of a generalized logit model based on the 

generalized logistic distribution of Balakrishnan and Leung (1988). We discussed 

the maximum likelihood estimation of the parameters of the generalized 
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regression model and demonstrated the procedures by using a real life data set on 

Prostrate cancer. Generalized likelihood ratio test is considered for testing the 

significance of the parameters of the model and a brief simulation study is 

attempted for establishing the better performance of the maximum likelihood 

estimators of the model. 
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