ISSN 0971-0388
Aligarh Journal of Statistics
Vol. 36 (2016), 39-56

On A Mixture Of Standard Normal And Two-Piece Skew Normal
Distributions

C. Satheesh Kumar' and M.R. Anusree’

[Received on August, 2015. Revised on November, 2016]

ABSTRACT

In this paper, we consider a new class of two-piece skew normal
distribution as a mixture of the standard normal distribution and the
two-piece skew normal distribution of Kim (Statistics, 2005). We discuss
some of the important aspects of this new class of distributions by
obtaining explicit expressions for its distribution function, characteristic
function, reliability measures, conditions for plurimodality etc. Further,
the estimation of the parameters of this class of distribution is attempted
and illustrated with the help of certain real life data sets.

1. INTRODUCTION

There has been a renewed interest in the development of asymmetric version of
normal distribution during the last three decades. For details see Azzalini (1985),
Kumar and Anusree (2011, 2014) or Genton (2004). Kim (2005) introduced and
studied a two-piece version of the skew normal distribution through the
following probability density function (p.d.f.), for A € R =(—w0,©), xX€ R,
g A)=C, f()F(A|x]), (LD
with

C,=2xlr+2wn' ()] (2
where f(.) and F(.) are respectively the p.d.f. and cumulative distribution function
(c.d.f.) of a standard normal variate. The distribution of the random variable X
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with p.d.f.(1.1) hereafter we denoted as 7SND(A) . The main drawback of the
TSND(A) in the practical point of view is that there exists a symmetric

behavior as determined by the sign of A on either side of the origin. To
overcome this difficulty, through this paper we develop a more wide class of
distribution as a convex mixture of the standard normal distribution and the
TSND(A), and we termed this class of distributions as“the two-piece mixture

skew normal distribution (TMSND)".

The paper is organized as follows. In section 2, we present the definition of
TMSND and discuss some of its important properties. In section 3, we obtain
certain conditions for the existence of pluromodality, which highlights the
importance of the TSND(A) in practical point of view. In section 4, we obtain

expression for certain reliability measures and a location-scale extension of the
TMSND is considered in section 5. Further, the parameters of the extended
TMSND are estimated by the method of maximum likelihood in section 6 and a
numerical illustration is given in section 7, with the help of certain real life data
sets.

We need the following shorter notations in the sequel. For any reals a, b and k

such that bx+ k>0

_x2+y2
e 2

wbx+k

Eaby= |

dydx. (1.3)
2

2. DEFINITION AND PROPERTIES

Here, first we define a wide class of two-piece skew normal distribution as a
convex mixture of the standard normal distribution and the two-piece skew
normal distribution of Kim (2005) and derive some of its important properties.

Definition 2.1 4 random variable Z is said to follow a two-piece mixture skew
normal distribution with parameters A € R =(—0,»), a €|[0,1] if its p.d.f-

h(z; A,a ) is of the following form, in which C, , =(1-a)C,, with C,
defined in (1.2). Forz € R h(z;2,a) = f(2)|a+C, ,F(2|z ) @2.1)

Note that the function given in (2.1) is a proper p.d.f. since,

=a+

CM { j' C,f(2)F(=Az)dz+ T Cﬂf(z)F(/iz)dz}
:], A —o0 0
40
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in the light of (1.1) and C, , = (1-a)C,.

The distribution of a random variable Z with p.d.f.(2.1) we denoted as
TMSND (A,) . Also it can be noted that (2.1) can be viewed as the convex
mixture of the p.d.f.’s of the standard normal distribution and TMSND (A, ).
Clearly, TMSND(A,1) or TMSND(0,«) is the standard normal distribution
and TMSND(A,0) is the skew normal distribution of Kim (2005). Further, if
A — —0, TMSND(A,2) reduces to the standard half normal distribution.

For some particular choices of 4 and «, the p.d.f. given in (2.1) of TMSND is
plotted as shown in Figure 1.

1 -
0.9 - e e 0 00=0.05
08 - mm mm=0.45

0.7 -
——>0=0.75

a=0.95

Figurel:Probability plots of TMSND(0.65, ) for some particular choices of
a( a=0.05,0.45,0.75,0.95).

Result 2.1 If Z follows the TMSND(A,a) withp.df h(z;A,a), then
a.)Y,=—Z follows TMSND(A,a) and

b)Y, =7’ has the following p.df.

Iy (73 A 2) —(fz(gq[zwcw] (2.2)
2

Remark 2.1 Note that when a=1 or A =0, (2.2) reduces to the p.d.f. of a
Chi-square variate with one degree of freedom.

Result 2.2 [f Z is a TMSND(A,a) variate, then for any reals d,, d, such that
d <d,,
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c
alF(dy)—F(d,)]+ g“ [G(d,.~2)-G(d,~)]d, <d, <0
P, <Z<d,)=
c
o[F(dy) = F(d))+—[G(d, 2) - Gdy, H}o < dy < d,

(2.3)

where G(.,A) isthe c.d.f. of the SND(A).

Proof: For any d, <d, <0, by definition,
dy
P(d, <Z<dy)= jh(z; 2, a)dz
d

1

d2 C
= [tr 1+

d

2"" 2 f(2)F(~Az)]dz
1

C/I,a

=a[F(dy)—F(d))]+ 5

[G(dy,~A) = G(d,~A)].

24
Now, for the case 0<d, <d,,

dy
P(d, < Z <dy)= [h(z; A, cr)dz
d

C;“ 2f(2)F(Az)}dz

dy
= [lar o)+
4

C
= a[F(d,) - F(d))]+ %{G(dz ,A) = G(dy, D).

(2.5)
Thus, (2.4) and (2.5) implies (2.3).

Result 2.3 The c.df. H(z;A,a) of a random variable Z with p.d.f. (2.1) is the
following.

C;’a [F(z)-2£)(z-2)) 2 <0

aF(z)+

H(z;A,a) = C,
,a

aF () += [F(z) + 2 e ()2, (z,z)},z >0,
T

(2.6)
42



On A Mixture Of Standard Normal...

where & (a,b) is as defined in (1.3).
Proof: Let Z be a random variable with p.d.f. (2.1). Then the c.d.f. H(z;4, )
is

L,z<0
H(z; A, o) = (2.7)
L,,z2>0,
in which
L= Jaf(t)dt+ C‘2 @ j F(OF(~At)dt
C/l a
= aF (2)+—% G(z-)
C/I a
= (2) + == (F(2) =26 (2:-2)) (2.8)
and
L=a j F@0)dt + C;’“ j 2 ()F(At)dt

0

0
= j of ()dt+C,, j F(OF(=At)dt +

—00 —00

I of (dt+C,, j F(6)F(At)d
0 0

c c
A2 G(0,~A) +—22
2 2

C -1
= aF (z) + 22 1 a1,
2 (2 b4

=aF(z) + [G(z,2) - G(0,1)]

2

Now on substituting (2.8) and (2.9) in (2.7) we get (2.6).
In order to obtain the characteristic function of TMSND(A,c) we need the

following lemma.

G ror- D 2| 2.9
VA

Lemma 2.2 If U is a standard normal variable, then for any real A and k,,

E[F(/1|U|+ko)]=F{ ko }+2§[ ko ,,1],

V1+ 22 V1+ A2

where forany a€ R and b>0,
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obx

&@b) = [ [£00 (v (2.10)
a0

Result 2.4 The characteristic function, @¢,(t) of a random variable Z
following TMSND (A,) with p.d.f (2.1) is the following, for any t € R and

i=~-1.

2 2

b,()=e¢ 2[a+C, F(-id)]-C, e 2 [& (wit,-2) - & (=it, )}

in which s =-A4it, 6= Lz and & (a,b) is as defined in (1.3).
1+ 4

Proof: Let Z follows TMSND(A,) with p.d.f. (2.1). By the definition of
characteristic function, forany € R and i =+/—1, we have

¢,(1)= Ee”)

= J'e”Zh(z;/l,a)dz

- Ie"’z f(@)a +C, o F(—Az))dz - j ¢ f(2)a+C, o F(—A2))dz
0

—00

0

+ je”z [N +C,  F(A2))dz
0

P B (z-it)? (z-it)?
e a+cﬂ,a_jw ¢ - Jf_;‘lz)dz dz—cmle : Jg_;(r_h)dz
B (z-in)?
e 2 F(A2)dz
+ Cl’av([T .

On substituting z—it=x, ¢, (t) reduces to

2
X
2 )

= e 2 F(=A(x +it))dx

¢,(0)=¢ 2la+C, | N

—0

]
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Xz X2
Te 2 F(—A(x +it))dx Te 2 F(A(x+it))dx
-Cy, +Cu,
& I N2 /1’ I N2

—it —it

t2 ©

—e 2 {a +Cy F(-id)-C,, j F)F(=A(x +it))dx

—it

+Chq .[f (X)F(A(x+ it))dx},
—it
in the light of Lemma 2.2
2 2

0 0 —Ax+s
6,(t)=e 2[a+C, F(-idt)]-C, e * j f(x)[ j F(u)du + J' f(u)du}dx +
—o0 0

—it

2w 0 Jx—s
Crae 2 jf(x)[ [rwau+ | f(u)du]dx,

—it —0 0

which implies (2.10)
3. MODE

In this section we discuss some important aspects of the mode of the
TMSND (A, ) , through the following results.

Result 3.1 The p.d.f- of TMSND (A,) is bimodal with unimodes in the region
of ze€(-»,0] if

(i) Az<0 or (i) Az>0 provided |k,(z;4,a) > k/(z;A,) and in the
region of z €[0,00) if

(i) Az>0 or(ii) Az<0 provided |k,(z; A, ) > k;(z; A, 2)]],

where

N A )
hEsO= CraF(-22)] S
2 —
k2 (z;/i,a) _ ﬁ“cl,af ( ﬁvz) -,
[a+C o F(=42)]
(3.2)
2
ky(ziha)=— 2T
[ +C), F(42)]
(3.3)
and
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AC, 0 [ (J2)
[a+C, FO2)

ky(z;A,) =
(3.4)

Proof: In order to show that there exists unimodes in regions of z € (—,0] and
z €[0,), it is enough to show that the second derivative of A(z;A,c) is

negative for all @ and A in the respective regions.
For z € (—,0], we have

2
jz—z{ln[h(z;/l,a)]} =—1-AC, [k (z:4,0) + ky (z; A, @)]

(3.5)
and for z €[0,), we have

2
jz—z {In[i(z; 2, @)= ~1-AC; [k (z: 4, @) + ey (23 4, )],

(3.6)

where k,(z;4,a) forj=1, 2, 3, and 4 are as given in (3.1) to (3.4). Note that
f(Az) and F(Az) are positive for all ze R and hence [a+C, ,F'(—1Z)]

is positive forall > 0.For z<0 and A>0,(3.5)is negative and hence the
density is unimodal. For A <0, (3.5) is negative if | k,(z;4,a) > k(z;4,2).
Similarly for z>0 and A4>0, (3.6) is negative and hence the density is
unimodal and for A4 <0, (3.6) is negative if | k,(z;4,a) > k;(z; A, &) . Thus

the proof of the result follows.
As a consequence of Result 3.1 we obtain the following result.

Result 3.2 The p.d.f. of TMSND (A, ) is plurimodal in the region of
ze(—o,0], for Azz>0 if |k,(z;4,) <k /(z;4,a¢) and

|AC, [k\(z; A, )+ k,(z; A, )] [> 1, and in the region of z €[0,00), for
Az<0 if |k,(z; A, ) |< ky(z; A, ) and

| AC, olhs(z54,0) + k(23 4, )] > 1.

4. RELIABILITY ASPECTS

Here we derive some properties of the TMSND (A,«) with p.d.f.(2.1) useful in
reliability studies.
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Let Z follows TMSND(A,a) with p.d.f.(2.1). Now from the definition of

reliability function R(#;A,a) and failure rate r(z;4,) of Z we obtain the
following results.

Result 4.1 The reliability function R(t;A,a) of the TMSND(A,) is

Cia [F(1)-2&,(t,-2)}t <0

aF(t)+ 5

Rt A, a)=1-

Cﬂ,,a

aF (1) +

tan" (1)
F()+280 22

-2&,(t,A4) |,t =0,

4.1
where & (f,A) is as defined in (1.3).

Proof  follows from  the  definition of reliability  function
R(t; A, a)=1-H(t; A, ), where H(t;A,) is as given in Result 2.3.

Result 4.2 The failure rate r(t;A,a) of Z following the TMSND(A,@) is

JOla+C; , F(=A1)]
Cﬂ,

,t<0

1—aF(t)- 2’”‘ [F(2) —2&,(,—4)]
ritA,a)=
Cf(t)[a+C12,aF(ﬂ~f)] 120
1—aF (1) - ;’a[F(t) +—tan” (D)= 26, ,1)}
(4.2)
Proof follows from the definition of failure rate, r(#;A,c) = M , Where
Rt A, )

R(t; A, ) is as defined in Result 4.1.

Further we derive the following result regarding the mean residual life function
of TMSND (A,«) .

Result 4.3 The mean residual life function u(t;A,a) of Z following the
TMSND (A,@) is
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of (1) + C o f(OF(—it) + % Cru+

T

T Cu (1)
0 ¢, Fla+22]-1<0
2 s

ut; A, a) =

R(2.0) | o)+ C v (OF (A1) + G,

_9

2w 7
{147

——C, F| tN1+ A" |-1,t>0,
2 s

(4.3)
A

N+ A

Proof: By definition, the mean residual life function of Z following the
TMSND (A,a, p) is given by

ult; A a)=E(Z|Z>1t)-t

where 6 =

0 0
j S+ C, F(-io)htz+ ajzf(z)dz +
0

t
o)

1 o, j 2f (2)F(A2)dz — 1t <0
R(t; A, ) 0

Tzf(z)[a +C,  F)dz—t,t>0.

t

(4.4)
Now forany <0,

[ @la+C, F(-2)ldz=~[f'(D)a+C, F(-Az)}dz

t

= A
=aof (1) - T2 Che L\/— - F(- t)f(f)}

+C j 1) f )iz
— a2 949 _
o)== = B C U F A0S0
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ACh 4 B —FN1+ 22 )}
Norx1+ 22

+

4.5)
and for any >0,

o0

[or@a+C FDNE = [ @la+ €, F2):

t

=af()+Cy, {F(/U)f(t) +

A
ﬂx/Hf]
C,,———FNI+ X 4.6
e o

In particular, when t=0 in (4.6) we have

° C/l a ]’C/I a
f (D)a+C, , F(iz)ldz =
! " ( (20 227 s £

On substituting (4.5), (4.6) and (4.7) in (4.4), we get (4.3).

4.7

5. LOCATION-SCALE EXTENSION

In this section we consider the location-scale extension of the TMSND (A, )
and discuss some of its important properties.

Definition 5.1 Let Z follows TMSND(A,a) with p.d.f. (2.1). Then
X =pu+0Z is said to have an extended two-piece mixture skew normal
distribution with location parameter u , scale parameter o and shape
parameter A and «, denoted as ETMSND (u,o;A,a), if its p.d.f. is of the
following form, in which #,A€ R, 0 >0 and a €[0,1].

h(x; U, 0',/1,0() = éf[%j[a + CLQF[&‘%‘H (5.1)

Clearly, ETMSND(u,o0;A,1) or ETMSND(u,0;0,) is the normal
distribution N(u,0) and ETMSND (u,0;4,0) is the extended skew normal
distribution [ ETSND(u,0,4) ] of Kim (2005). Further, if A ——oc0 and
a=2 ETMSND(u,o;A,a) reduces to the half normal distribution
HN(u,0).

Corresponding to the results obtained for TMSND (A, ), here we have the
following for ETMSND (u,o0;1,).
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Result 5.1 The characteristic function @, (t) of a random variable X
following ETMSND (u,0;A,a) is the following, in which s=—Ait and

A .For i=+—-1 and teR,

NI+ A2

2

b, )=¢" 2 [arC, F-ison]-C, " 2 &, (ito 1)~ £, (-ito, )}

o=

Result 5.2 The c.df H(t,u,o,A,a) of a random variable X following

ETMSND (u,0; A, @) is the following, in which fo(t_—’u,i) is as defined in
o

(1.3).

of(t_ﬂj+ Cra [F(t_ﬂj—%o(t_—#,—/lﬂ,mﬂ
o 2 o o

H(t,ﬂ,O',ﬂ,,a):
— C — -1 —
aF(t ”j+ “‘[F(t ”)+2mn (ﬂ)—zgo(t ”,Aﬂ,rzy
T

o 2 o o
Result 5.3 The reliability function R(t,u,o,A,a) of a random variable X
following ETMSND (u,0;A, &) is the following.

aF(t_'u)+ Chra {F(Z—/lj_zéo(w’_gﬂ,zgu

o 2 o o

HF(t_lu)+ Cl’a |:F(t_'uj+2tanl(l) _2§O(t_luaﬂj:|at2;u
c 2 o a d

Result 5.4 The failure rate r(t;u,o,A,a) of a random variable X following
ETMSND (u,0; A, ) is the following,

f[tiﬂ){a+cﬂaF[fﬂt7”n
o ’ o
() o ()l )
o—-aocF -o [F -2&y —A ]
o 2 o o
r(tyu,o,A,a) = . .
f[ ”j[owcﬂaF[ﬁ—”ﬂ
o ’ o

_ C _ _
G—ao‘F(t uj—o‘ 4. {F(I uj+£tanil(l)—2§0[i,ﬂj}
o 2 o b4 o

Rt p,0,4,0)=1-

>
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6. ESTIMATION

Let X|,X,,..,X, be a random sample taken from ETMSND (u,0;4,c)

with p.d.f. (5.1). Let X, X,),..., X, be the ordered sample. Assume

Xy <p <X, for a particular r=1,2,...,n. Then the log-likelihood function

of the sample is the following, in which X, , denote the summation over the set
J

Ij such that
I, = {i:X(i) <u, fori=1,2,...,r} and
I, = {i:X(i) 2y,f0ri=r+1,..,n}.

InL=-nlno+Y In f(uj{a +C MF(MH +
Il =

o
Sn f(mi ~4) ]{“ o F(ﬂ(xi ~4) H
o o
Yl
Differentiate (6.1) with respect to the parameters #, o, A and «, and
equate to zero to obtain the following likelihood equations:

Z(x[ —2;:}&6;,(1 5 f(_j—(x" _”)j

ne e i [0!+C4,aF(_;(xi —ﬂ)j]

+Z[x" Z”)—fZ f(i(xi ﬂ)j -0, (62)

L +1z(xi_“)2_z f(—j(i—ﬂ)] lcﬂ’“ﬂ(xi—y)

I [a+ Cﬂ,aF(j(xi —ﬂ)]] 2 o

(6.3)
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—od @), f(_ A(J;i _ ﬂ)J " . ! $C Y f ( ija_ y)J (x; — 1)

T TN R T AT
and
1-2p| “ATH) Y i)
e T
(6.5)
Let .
w(x;) = f(_ ’ i j
et
and
f( e ﬂ)j
Q(x,) = o ’
[[a + CMF(A (o, = ”)j]}
o
I
[[a + CMF(— P - ”)H
and »
A= F(ﬂ U) |
[[a + CMF(A (XU‘”)H

Then the equations from (6.2) to (6.5) becomes

Z (xi;ﬂ) + Z (xi;ﬂ) = Cl’aﬂlz —w(x; )+ ZQ(x,- )}, (6.6)

11 ]2 11
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1 o 12 °
c, A
D ol Mo — )= D 0 o — 1) | (6.7)
20 I 5
cﬂ,azw(xi)(xf;“}rcﬂ,aZQ(x,.)(xf;“J—0 (6.8)
11 [2
and
ZW(X )+ ZA(X ) = ( o+ 2) 0. (69)

On solving the non-linear system of equations (6.6) to (6.9) by simultaneous
solution method using some mathematical softwares such as MATHCAD ,
MATLAB , MATHEMATICA etc. we get the maximum likelihood estimates
(MLE) of the parameters of ETMSND (u,0;1,cx).

7. NUMERICAL COMPUTATIONS
For illustrating the above procedure, we have considered two data sets.

Dataset 1:The data on average length of stay for patients who are in hospital for
acute care because of problems, hepatobiliary system and pancreas, and die for
this cause. The sample, under study, corresponds to 1082 hospitals in 10 states of
the United States (For details, see columns 4 in http://lib.stat.cmu.edu/data-expo/
1997/ascii/p07.dat).

Dataset 2:The data on the heights (in centimeters) of 100 Australian athletes,
given in Cook and Weisberg (1994). The data recorded is as given below.

148.9 149156 156.9 157.9 158.9 162 162 162.5 163 163.9 165 166.1 166.7 167.3
167.9 168 168.6 169.1 169.8 169.9 170 170 170.3 170.8 171.1 171.4171.4 171.6
171.7 172 172.2 172.3 172.5 172.6 172.7 173 173.3 173.3 173.5 173.6 173.7
173.8 174174 174 174.1 174.1 174.4 175 175 1751753 175.6 176 176 176 176
176.8 177 177.3 177.3 177.5 177.5 177.8 1779 178 178.2 178.7 178.9 179.3
179.5179.6 179.6 179.7 179.7 179.8 179.9 180.2 180.2 180.5 180.5 180.9 181
181.3 182.1 182.7 183 183.3 183.3 184.6 184.7 185 185.2 186.2 186.3 188.7
189.7 193.4 195.9.
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We obtained the MLE of the parameters of the Normal, ESND(u,o0;A),
ETSND(u,o0;A) of Kim (2005) and ETMSND (u,0;A,c) with the help of
equations (6.6) to (6.9), and MATHCAD
log-likelihood (/), the Akaike s Information Criterion (AIC), the Bayesian

Information Criterion (BIC) and the corrected Akaike s Information Criterion
(AICc) are computed for each fitted models corresponding to Data set 1 and Data
set 2 and presented in Tables 1 and 2 respectively.

Table 1:Estimated values of the parameters and computed values of [, the AIC
the BIC and the AICc for the models - N(u,0), ESND(u,o;4),
ETSND(u,o0;A) and ETMSND (u,0;4,).

software. The values of

Distribution: | Normal ESND ETSND ETMSND
(4,0) (#,054) (u,0;4) | (,034,2)
A 5.76 4.12 4.72 4.65
o 1.61 2.3 1.64 1.82
y) - 2.06 -0.18 0.28
a - - - 0.785
] -2052.82 -2023.65 -2020 -1860
AIC 4109.64 4053.31 4046 3728
BIC 4119.61 4068.26 4060.96 3747.95
AlCc 4109.65 4053.32 4046.022 3728.03

Table 2: Estimated values of the parameters and computed values of [, the
AIC, the BIC and the AICc for the models - N(u,0), ESND(u,o;4),

ETSND(u,0;A) and ETMSND (u,0;4,2) .

Distribution: | Normal ESND ETSND ETMSND
(1,0) (u,0,4) (u,0:4) (1,054, a)

i 174.594 174.58 172.25 174.7

Vol 8.24 8.20 9.2 8.38

i - 0.0016 -0.04 -0.065

a - - - 0.0085

/ -352.318 -351.9 -352.318 1 346.667

AIC 708.64 709.8 710.636 701.33

BIC 713.85 717.6155 718.45 711.75

IAICc 708.76 710.05 710.89 701.75

54




On A Mixture Of Standard Normal...

From Table 1 and Table 2, it can be observed that the ETMSND (u,0;4,)
gives better fit to both the data sets compared to the existing models - N(u, o),
the ESND(u,o0;A) andthe ETSND(u,o;1).
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