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THROUGH LOCAL FREQUENCY RATIO METHOD
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ABSTRACT

Most of the Estimation techniques are based on mpnformation of
the sample and parameters are estimated by ditfekégthods of
Estimation. But if only partial information is usedow to estimate the
parameter? If estimated, how far these estimatoes good when
comparing with the full information sample. In tlEgidy we apply Local
Frequency Ratio Method to estimate the parametedsfaund that this
method estimates the parameters effectively wih ieformation.

1. INTRODUCTION

According to Hogg and Tanis (2001) estimation ispracess of inputting
numerical values (or a range for the values) tgpmameter of interest based on
a sample observation coming from a specified distron. The function of the
sample value (used for this purpose) is a statstit its value (in case of point
estimation) is taken as the parameter values ofdibiibution or a specified
function of the parameter. The statistics so usedalled an estimator of the
parameter and the particular value obtained fragrdita is called an estimate.

Most of the estimation techniques for estimatidnparameters are based on
complete Information of sample under study. Howevds also possible and
often necessary to construct estimators basedrtialpaformation from samples
i.e. by information on sample values, which fafitoitwo or few of their lines or
bins in a frequency distribution ignoring the valdalling into other region in the
frequency distribution. Estimators are based not ghobal but on local
information from the sample.

This approach is of course not entirely new. Fetance, estimation problem in
situation where sample observations are censorédimcated can obviously be
claimed to belong to this category. But any deth#géudy of such estimation
procedure and the properties of such estimatorsxaioseem to have been
reported so far. The present problem is an effottis direction.
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Our investigation aims to answer mainly the folllogvquestions.

1) Using only local information from different |ddges (locals) in the sample
set, how good an estimator of the parameter carhope to obtain?

2) How do these estimators compare with the udulhlglobal sample based
estimators?

3) Particularly, when only partial data is considehedv the local information
estimator compares with the global estimators thkés into account the
entire sample.

2. THE PARETO DISTRIBUTION

The Pareto distribution is a Continuous probabititgtribution named after the
economist Vilfredo Pareto. The Pareto distributiais been used to represent the
income distribution of a society. It is also usedrtodel many phenomena such
as city population sizes, occurrence of naturadueses, stock price fluctuations,
size of firms, and brightness of comelbte Pareto distribution is defined by the
following functions:

PDF : f(x|a,k>:iLa

7. K x<»5a, k>0

CDF:F<x|a.k>=l—(k?j k< x< ®w;a k>0

The parameter k marks a lower bound on the possialees that a Pareto
distributed random variable can take on. A fevl Wweown properties are:

2
E(X)= ak ak

a-1 [(a-1) (a-2)]
2.1 Parameter Estimation
We are interested in estimating the parameterh@fRareto distribution from
which a random sample comes. We will outline a fgavameter estimation
methods.
2.1.1 Method of moments
Under this method, we equate the sample mean amdnga with the
distribution’s theoretical expected value and vacea We obtain two equations
and two unknowns:

,a> 1,V (X)= ,a> 2

—_ ak ., _ ak?®
X = =

a-1’ [(a-1)"(a-2)]

Solving these equations yields the following estormofa andk:
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2 Y —
soq4 [LEXT X (a-1)
S a
2.1.2 Maximum Likelihood Estimation

Let X,X,,...%,a random sample of n observations drawn from Pareto

>

population. The likelihood function for the Parelistribution has the form
n " ak? ngan
L= f X | a, k)= T’ L = a—
|i_=! < ‘ > I|_=l Xi ' |—nl X_a+l

The maximum likelihood estimates feranda are the values ok anda that
makes L as large as possible given the data we. fdnevalue of k cannot be
larger than the smallest value in the sample géeirao the estimate kfcan be

taken ask = min(x ).

In order to find the maximum likelihood estimate & we take logarithm of L,
since L is nonnegative.

LogL = nlog a- anlog k- ( a+ 1)Zn: log X
i=1

n
The likelihood equation is dloglL _, n_ nlogk —Zlog X =0
da a i=1

On simplification, we get 4 = n _ n
nlogk—zn: log x ilog(?}
i=1 i=1

For example; we generate 50 random samples, each of size 1000 Pareto
distribution by taking (K=1; a=3f-or each sample we estimate parameters k and

a by using above procedures. The Mean, Standaot E{fﬁl,ﬁz of these 50

estimates were computed. The Estimated bias waslatdd as the mean minus
the true value of the parameter. The Mean Squarest BEMSE) was calculated
as the bias squared plus the variance. The reatdtshown in the following
table.

Table 1: Descriptive for both methods

Method of Moments Method of MLE
a k a k
Mean 3.2064 1.0278 2.9937 1.0004
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SE 0.3585 0.0482 0.1010 0.0004
JB 0.4106 1.1852 0.4220 1.4256
B, 2.9936 4.3673 3.2226 4.4269
Bias 0.2064 0.0278 10.0063 0.0004
MSE 0.1711 0.0031 0.0102 0.0000

2.1.3 Frequency Ratio Method of Estimation

Letys yo....... yn be a random sample from a distribution. Frors gample a

frequency distribution is constructed with an apiate bin width ‘h’. The

midpoint points of these bins are denoted by k= 1,2....... k (number of
xh

bins).The corresponding frequencies are denotdd,bdy= 1,2....k. Thus
n

is an estimate of the probability of y falling imet corresponding bin ‘i’ and is an
estimate of the probability lying in the interva@hus f (xi)x h can be estimated

by L using the ratios df(x)’s and equating them with corresponding observed
n

frequency ratios gives a way of estimating the matars similar to the moments
method of estimation. Léfandf, are the frequency densities at the pokatand
X2 given by

ak? _ak?

a+1
Xl X2

The ratio of the frequencies is
L _ X2a+1 _ & a+l
f2 X1a+l Xl

Taking logarithms on both sides, we get

MmN
'OQ[H and Iz—min( )
2) _q - X

log £X2]
Xl

On simplification, 5=
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[lustration:

As explained earlier, we generate a sample of Kip® from a Pareto (a=3, k=1)
distribution using MATLAB function. For the geneedt data the following
frequency distribution is obtained.

X 1.2501 1.7501 2.2501 2.7501 3.2501

677 193 72 28 0

Using these values in the above formula, the estidhzalue of a is

677
log 193
-1=2.73

1.2501
The above procedure is repeated for 50 samplestiBa®, Standard Erray/f;,
B;bias of these 50 estimates were computed. The asiihbias was calculated
as the mean minus the true value of the paraméter. Mean Squared Error

(MSE) was calculated as the bias squared plusahance. The following results
are obtained:

a=

Table 2: Descriptive for LFR Method

a k
Mean 3.1496 1.0004
SE 0.2469 0.0004
JB1 0.3798 1.4256
i 3.3016 4.4269
Bias 0.1496 0.0004
MSE 0.0834 0.0000

From the above tables, we notice that the actulalegaof (a, k) and the mean
estimated values of( K under the frequency ratio method and other method
are almost same. Therefore, it can be taken asca g@stimator. Similar
procedure is followed for different sample sized diiferent values of (a, k) and
the results are tabulated in the following tables.

3. COMPARISON OF METHODSOF MOMENTS, MLE AND
FREQUENCY RATIO FOR DIFFERENT SAMPLE SIZESAND
DIFFERENT PARAMETERS
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Table 3: Simulation statistics for Pareto (3, 1, 100)

ns = 100
a=3: k=l Method of moments Maximum Likelihood Frequency Ratio
Method
a k a k a k

Mean 3.2670 1.0377 3.0017 1.0003 3.1478 1.0003

SE 0.3981 0.0580 0.0979 0.0003 0.2748 0.0003
-.JE 0.6866 2.0851 0.1785 1.2986 0.4619 1.2986

B2 3.6152 8.7724 2.9173 4.1652 2.8449 4.1652
Bias 0.2670 0.0327 0.0017 0.0003 0.1478 0.0003
MSE 0.2298 0.0044 0.0096 0.000 0.0974 0.0p0

Table 4: Simulation statistics for Pareto (3, 1, 200)

ns= 200
a=3; k=1 i
Method of moments Maximum Likelihood Frequency Ratio
Method

a k a k a k
Mean 3.2657 1.0317 3.0098 1.0003 3.1985 1.0003
SE 0.3979 0.0528 0.0966 0.0003 0.241b6 0.0003
w‘ﬁ 0.5345 1.7159 0.3035 1.6101 0.1710 1.6101
B8 3.1307 6.5251 3.2694 5.6326| 2.6308 5.6326
Bias 0.2657 0.0317 0.0098 0.0003 0.198b6 0.0003
MSE 0.2289 0.0038 0.0094 0.000( 0.097f 0.00D0

Table 5: Simulation statistics for Pareto (5, 10, 50)

ns =50
a=5; i
k=10 Method of moments Maximum Likelihood Frequency Ratio
Method
a k a k a k
Mean 4.9345 9.9662 4.9835 10.002 5.4030 10.002
SE 0.3443 0.1376 0.1563 0.0017 0.3534 0.0017
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\."E 0.0087 -0.5740 0.0651 1.1698 0.4410 1.1698
B 2.5867 2.7132 2.7175 4.2560 2.8721 4.256D
Bias -0.065 -0.0338 -0.0165 0.0020 0.4030 0.0020
MSE 0.0044 0.0012 0.0003 3.93e-006 0.1625 3.93e-p06

Table 6: Simulation statistics for Pareto (5, 10, 100)

a=s: ns =100
k=10 Method of moments Maximum Likelihood Frequency Ratiethbd
a k a k a k
Mean 4.9345 9.9662 4.9835 10.0019 5.2030 10.0019
SE 0.3443 0.1376 0.1563 0.0019 0.3534 0.0019
y‘ﬁ 0.0087 -0.574 0.0651 1.8182 0.4410 1.8182
B2 2.5867 2.7132 2.7175 6.8251 2.8721 6.8251
Bias -0.065 -0.033 -0.0165 0.0019 0.4358 0.0014
MSE 0.0044 0.0012 0.0003 3.76e-006 0.1901 3.76e-006

Table 7 : Simulation statistics for Pareto (5, 10, 200)

ns = 200
a=5; k=10
Method of moments| Maximum Likelihood  Frequency Ratiethbd
a k a k a k

Mean 2.9221 3.9224 3.0154 4.0018 3.1798 4.0018
SE 0.2424 0.1480| 0.0849 0.0018 0.2433 0.0018
\,"E -0.134 -0.3781| 0.1308 1.1341 0.3441 1.1341
B2 1.9689 2.2147 2.4634 3.3688 2.5521 3.3988
Bias -0.078 -0.0779| 0.0154 0.0018 0.1798 0.0018
MSE 0.0061 0.0061 0.0002  3.34e-006 0.0324 3.34e-006
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Table 8: Simulation statistics for Pareto (3, 4, 50)
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ns=50
a=3; k=4
Method of moments Maximum Likelihood Frequency Ratietibd
a k a k a k

Mean 4.9161 9.9523 4.9934 10.0019 5.4156 10.0019

SE 0.3390 0.1554 0.1618 0.0019 0.324D 0.0019
\,"'E -0.345 -0.9485 0.1258 1.5016 0.253( 1.5016

B2 3.4192 4.7027 3.1781 5.1698 3.2370 5.1698
Bias -0.084 -0.0477 -0.007 0.0019 0.4156 0.0019
MSE 0.0072 0.0023 0.0001 0.0000 0.1729 0.0000

Table9: Simulation statistics for Pareto (3, 4, 100)

ns= 100
a=3; k=4
Method of moments Maximum Likelihood Frequency Ratiethbd
a k a k a K
Mean 2.9445 3.9346 3.0000 4.0014 3.1930 4.0014
SE 0.2717 0.1683 0.1006 0.0013 0.2626 0.0013
-Q'E -0.171 -1.1393 0.0270 1.4220 -0.2190 1.4220
B2 3.0482 5.1894 2.3433 6.0989 2.4703 6.0989
Bias -0.055 -0.0654| 4.15e-005 0.0014 0.1930 0.0014
MSE 0.0030 0.0043 1.01e-005 1.86e-006 0.0373 108Ge-
Table 10: Simulation statistics for Pareto (3, 4, 200)
ns= 200
a=3; k=4
Method of moments| Maximum Likelihood Frequency Ratietivbd
a k a k a K
Mean 2.8898 3.8911 3.0047 4.0013 3.1855 4.0013
SE 0.3320 0.2376 0.0958 0.0011 0.2590 0.0011
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\."E -0.631 -1.7891 -0.0263 1.1865 0.321y 1.1865

B 3.4086 7.4399 2.8725 4.0392 3.2658 4.0392
Bias -0.110 -0.1089 0.005 0.0013 0.1855 0.0013
MSE 0.0123 0.0119 3.11e-005 1.58e-006 0.0345 1068e-

4. CONCLUSIONS

From the empirical study of the type of distributicdhe estimates computed
using the various estimation procedures includihg tne based on full
information is reported for which the statisticastdbutions are summarized by
its mean, standard erroff,, B, ,Bias and Mean square error computed from the
simulated data.

We observe that the mean estimated values based Method of
moments/Method of Maximum likelihood estimation lwitll data and the Local
frequency ratio method is nearly equal to the twadue of the parameter.
However, the standard errors of Local FrequencyoRaéthod are slightly more
than that of the estimator based on full informatsample. But in the particular
case where out liars may affect the estimation guope based on global
information, this aspect is insignificant. Thus,emhfull information is available
the local information based estimators are effetyivas good as the
corresponding Method of moments /Method of Maximiikaelihood estimation
with full information.

REFERENCES

Aris  Spanos(1999). Probability Theory and Statitidnference: United
Kingdom at the University Press, Cambridge.

Hogg and Tanis (2001). Probability and Statistibe#erence Sixth addition-
Prentice-Hall publications, Newjersy.

Joseph Lee Peterson: Estimating the ParametersPareto Distribution by a
Quantile Regression methagiww.math.umt.edu/gideon/par eto.pdf
Rao,C.R(1973). Linear Statistical Inference asdApplications-John Wiley and
sons, New York.

Robert V. Hogg and Allent T. Craig (2002). Introtioo to Mathematical
Statistics-Pearson Publications, Singapore.

115



Ch.Yugandhar, V.V.Haragopal

Rudra Pratap (2004). Getting Started with MATLABfGx University press,
New York.

Vijay K.Rohatgi and Ak Md Ehsames Saleh(2002). Amrdduction to
Probability and Statistics- John Wiley Inter sciefublication.

Yugandhar.Ch , V.V.Haragopal, S.N.N.Pandit (201flpcal Information Based
Parameter Estimation for Exponential distributidtNU Journal of Physical
Sciences,Vol.3,No 1&2,June-December 2011.

Ch.Yugandhar?, V.V.Haragopal®

Received: 25.11.2013 Department of Statistics & Director,
Center for Quantitative Methods, Osmania
Revised: 25.04.2015 University, Hyalead -500 007 (A.P.), India.

“Department of Statistics, St. Francis College for
Women, Hyderabad — 500 016 (A.P.), India

E-mail: haragopalvajjha@gmail.com
yug 0203 @rediffmail.com

116



