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ABSTRACT 

This paper develops the Bayesian estimators for the unknown parameters 
of Frechet distribution under different asymmetric loss functions. The 
Bayesian estimators cannot be obtained in closed forms. An approximate 
Bayesian approach is proposed using Lindley’s approximation to obtain 
the Bayesian estimates. The approximate Bayes estimates obtained under 
the assumption of non-informative priors are compared with their 
maximum likelihood estimates via Monte Carlo simulation study. Two real 
data sets are analyzed for illustrative purposes.   

1. INTRODUCTION 

Frechet distribution was introduced by French mathematician Maurice Frechet 
(1878-1973), who identified possible limit distribution for the largest order 
statistic during 1927. The Frechet distribution have been used as an useful 
method for modeling and analyzing several extreme events such as accelerated 
life testing, earthquake, flood, rainfall, sea current and wind speed. Therefore, 
Frechet distribution is well suited to characterize random variables of large 
features. The random variable X is said to follow a Frechet distribution with 

parametersα  and β  if the cumulative distribution function (CDF) is given by 
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Therefore, the corresponding probability density function (PDF) of the Frechet 
distribution is;  
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where the parameterα determines the shape of the distribution andβ  is the scale 

parameter. Frechet distribution is equivalent to taking the reciprocal of values  
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from a standard Weibull distribution. The Frechet distribution has been 
extensively studied by different authors; see, for example, Harlow (2002) 
suggested that it is important for modeling the statistical behavior of materials 
properties for a variety of engineering. Nadarajah and Kotz (2008) discussed the 
sociological models based on Frechet random variables. Further, Zaharim et al. 
(2009), abbas and  Tang (2014) and Mubarak (2012) studied the application of  
Frechet distribution. Abbas and Tang (2013) estimated the parameters of Frechet 
distribution based on type-II censored samples. Moreover, Gumbel (1965) 
estimated the parameter of Frechet distribution. Abbas and Tang (2012) studied 
different estimation methods for Frechet distribution with known shape. Mann 
(1984) discussed the estimation procedures for the Frechet and the three-
parameter Weibull distribution. The relationships between Frechet, Weibull and 
the Gumbel distribution were also discussed. Further, the maximum-likelihood 
and moment estimators as well as linearly based estimators involving only a few 
order statistics and properties for large and small samples were also discussed. 
However, Bayesian estimation under different loss functions is not frequently 
discussed. Perhaps, the Bayesian estimators under different loss functions 
involve integral expressions, which are not analytically solvable.  In order to 
reduce the difficult integrals that are in the posterior distribution which cannot 
explicitly be obtained in close form. Therefore, we employed Lindley’s 
approximation technique for solving such problems. 
The main aim of this paper is to develop the Bayesian estimators of the 
parameters of Frechet distribution under different loss functions using non-
informative priors. The rest of the paper unfolds as follows. In Section 2, the 
maximum likelihood estimators (MLEs) and observed Fisher information matrix 
for parameters are derived. Bayesian estimation under LINEX (linear 
exponential) loss function and general entropy loss function is discussed in 
Section 3. Monte Carlo simulation study is presented in Section 4 to assess the 
performance of Bayesian and MLEs in terms of mean squared error (MSE). Two 
real data sets are analyzed in Section 5 and finally conclusion is given in Section 
6. 

2. MAXIMUM LIKELIHOOD ESTIMATION 

Let nXXXX ...,,, 21= be a random sample of size n from the Frechet 

distribution (2). The likelihood function of ),( βα is  
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Then the log-likelihood function can be written as 
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From equation (5), β̂  is obtained in terms of  α̂  in the form  
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Obviously it is not easy to obtain the closed form solution for the two non-linear 
equations (4) and (6). We use BFGS quasi-Newton optimization method to 
compute MLEs. Further, the observed Fisher information matrix is obtained by 
taking the second and mixed partial derivatives of  with respect to and . 
We have 
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3. BAYESIAN ESTIMATION 

In Bayesian estimation, we consider two types of loss functions. The first one is 
LINEX loss function, which is asymmetric. The LINEX loss function was 
introduced by Varian (1975), and several authors, such as Basu and Ebrahimi 
(1991), Rojo (1987) and Nassar and Eissa (2004), have used this loss function in 
different estimation problems. This function rises approximately exponentially 
on one side of zero and approximately linearly on the other side. The LINEX loss 
function can be expressed as 

,0,1)( ≠−∆−∝∆ ∆ cceL c                                                                  (7) 

where )ˆ( θθ −=∆ and θ̂  is an estimate ofθ . The sign and magnitude of the 

shape parameter c  represents the direction and degree of symmetry, 
respectively. Moreover, if 0>c the overestimation is more serious compared to 
the under estimation and vice-versa. For c  close to zero, the LINEX loss is 
approximately squared error loss and therefore almost symmetric. The posterior 
expectation of the LINEX loss function (7) is  

       [ ] [ ] ,1))(ˆ()ˆ(
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where ( )Eθ ⋅  denotes the posterior expectation with respect to the posterior 

density ofθ . The Bayes estimator ofθ , denoted by BLθ̂ under LINEX loss 

function, is the valueθ̂ , which minimizes (8). It is  
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provided that the expectation [ ]θ
θ

ceE − exists and is finite. The problem of 

choosing the value of the parameter c  is discussed in Calabria and Pulcini 
(1996). The second type of loss function is the generalization of the entropy loss, 
which is discussed by Dey and Liu (1992) and Dey (1987). The general entropy 
loss is defined as  
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where  is an estimate of  The Bayes estimator relative to the general entropy 
loss function is 
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provided that )( cE −θ exists and is finite. For 1=c the Bayes estimator (11) 

coincides with the Bayes estimator under the weighted squared error loss 
function, and for 1−=c the Bayes estimator (11) coincides with the Bayes 
estimator under the squared error loss function. Further, the Bayesian estimators 
under LINEX loss function and general entropy loss function are presented in 
Appendix.  

4. SIMULATION STUDY 

Simulation study is conducted in order to compare the performance of the 
presented Bayesian estimators with the known non-Bayes estimator such as 
MLE.  Since the Bayesian estimators of the model parameters cannot be obtained 
analytically, approximate Bayesian estimates are computed using Lindley 
approximation. In computing the estimates samples are generated from the 

Frechet distribution using the transformation αβ
1

)ln(
−

−= ii UX , where iU is 

uniformly distributed random variable and we replicated the process 5000 times 
for each sample size and  the average of estimates is computed. For Bayesian 
estimators, we consider that α and β  each have independent Gamma (a1,b1) and 

Gamma(a2,b2) priors. Further, the Bayesian estimators of α and β  are also 

obtained using general uniform priors. We use the shape parameter 1.5c =  and 
non-informative priors of both α and β , i.e., a1=a2=b1=b2=0. Comparison are 

made in terms of means and MSEs (with in parenthesis) and results are presented 
in Tables 1 and 2. Some of the points are quite clear regarding the performance 
of the estimators, which are summarized below.  

1. As expected, it is observed that the performances of both Bayesian and 
MLEs become better when sample size increased. Sample size is varied 
to see the effect of small and large samples on the estimators considering 
fixed values of parameters. Moreover, it is observed that for large sample 
sizes, the Bayesian estimates and MLEs become closer in terms of 
MSEs, because for large sample sizes the effect of prior on posterior is 
minimal. 

2. The Bayesian estimators under general entropy loss function  and LINEX 
loss function perform better than MLEs obtained by using Gamma priors 
and general Uniform priors in terms of their MSEs  with all the hyper 
parameters equal to zero, i.e., a1=a2=b1=b2=0.  From Tables 1 and 2, we 
can see that in each scenario, the Bayesian estimators under assumption 



Kamran Abbas, Yincai Tang 

96 

 

of general entropy loss function and LINEX loss function outperform the 
MLEs since MSEs are significantly smaller whatever the value of shape 
parameter c . 

3. Considering Tables 1 and 2, we noticed that Bayesian estimators worked 
remarkable well under general   entropy loss function and LINEX loss 
function with respect to MSEs. As the sample size increases, the MSE 
values of the general entropy loss function and LINEX loss function 
decreases to smaller values than any of the others but it must be stated 
that the others also have their MSE values decreasing with increasing 
sample size. 

Notations:  
BLG: Bayesian estimators under LINEX loss function using Gamma prior. 
BLU: Bayesian estimators under LINEX loss function using general Uniform 
prior. 
BEG: Bayesian estimators under general entropy loss function using Gamma 
prior. 
BEU: Bayesian estimators under general entropy loss function using general 
Uniform prior. 

Table 1: Average estimates and corresponding MSEs (With in parenthesis) for α. 
n Estimator 

↓ α→ 1.0 1.5 2.0 

20 ML 1.0768(0.0489) 1.6112(0.1050) 1.1622(0.2002) 

BLG 
BLU 

1.0405(0.0458) 
1.0619(0.0487) 

1.5648(0.1014) 
1.6034(0.1047) 

2.1029(0.1997) 
2.1593(0.2001) 

BEG 
BEU 

1.0248(0.0408) 
1.0459(0.0451) 

1.5217(0.0843) 
1.5599(0.0932) 

2.0178(0.1535) 
2.0737(0.1696) 

30 ML 1.0490(0.0267) 1.5691(0.0603) 2.1023(0.1130) 
BLG 
BLU 

1.0244(0.0253) 
1.0377(0.0265) 

1.5373(0.0585) 
1.5616(0.0602) 

2.0611(0.1110) 
2.0970(0.1118) 

BEG 
BEU 

1.0150(0.0235) 
1.0282(0.0251) 

1.5111(0.0523) 
1.5352(0.0557) 

2.0094(0.0944) 
2.0448(0.1006) 

50 ML 1.0318(0.0152) 1.5426(0.0316) 2.0554(0.0582) 
BLG 
BLU 

1.0169(0.0146) 
1.0246(0.0152) 

1.5233(0.0308) 
1.5374(0.0314) 

2.0300(0.0573) 
2.0506(0.0580) 

BEG 
BEU 

1.0116(0.0140) 
1.0192(0.0146) 

1.5085(0.0288) 
1.5225(0.0299) 

2.0018(0.0525) 
2.0215(0.0543) 

80 ML 1.0162(0.0082) 1.5266(0.0198) 2.0324(0.0333) 
BLG 
BLU 

1.0069(0.0080) 
1.0115(0.0081) 

1.5145(0.0193) 
1.5230(0.0197) 

2.0164(0.0329) 
2.0289(0.0332) 

BEG 
BEU 

1.0037(0.0078) 
1.0083(0.0080) 

1.5055(0.0186) 
1.5140(0.0190) 

2.0014(0.0312) 
2.0114(0.0318) 
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100 ML 1.0129(0.0067) 1 .5209(0.0144) 2.0327(0.0268) 
BLG 
BLU 

1.0054(0.0065) 
1.0091(0.0066) 

1.5112(0.0142) 
1.5180(0.0142) 

2.0198(0.0264) 
2.0298(0.0266) 

BEG 
BEU 

1.0030(0.0063) 
1.0066(0.0065) 

1.5042(0.0138) 
1.5109(0.0140) 

2.0010(0.0251) 
2.0159(0.0257) 

Table 2: Average estimates and corresponding MSEs (With in parenthesis) for β. 
n Estimator 

↓ β → 1.0 1.5 2.0 

20 ML 1.0452(0.0698) 1.5404(0.0640) 2.0367(0.0611) 

BLG 
BLU 

1.0404(0.0655) 
1.0450(0.0696) 

1.5313(0.0615) 
1.5401(0.0638) 

2.0333(0.0604) 
2.0360(0.0609) 

BEG 
BEU 

1.0449(0.0688) 
1.0451(0.0695) 

1.5400(0.0636) 
1.5402(0.0637) 

2.0364(0.0608) 
2.0366(0.0610) 

30 ML 1.0376(0.0449) 1.5303(0.0420) 2.0223(0.0403) 

BLG 
BLU 

1.0349(0.0431) 
1.0357(0.0447) 

1.5242(0.0409) 
1.5300(0.0416) 

2.0199(0.0385) 
2.0219(0.0400) 

BEG 
BEU 

1.0363(0.0446) 
1.0366(0.0448) 

1.5301(0.0417) 
1.5302(0.0418) 

2.0221(0.0401) 
2.0222(0.0402) 

50 ML 1.0222(0.0245) 1.5123(0.0232) 2.0143(0.0234) 

BLG 
BLU 

1.0216(0.0241) 
1.0219(0.0244) 

1.5088(0.0229) 
1.5121(0.0230) 

2.0127(0.0226) 
2.0140(0.0228) 

BEG 
BEU 

1.0220(0.0242) 
1.0221(0.0243) 

1.5126(0.0231) 
1.5122(0.0231) 

2.0141(0.0230) 
2.0142(0.0231) 

80 
ML 1.0129(0.0149) 1.5088(0.0153) 2.0087(0.0147) 

BLG 
BLU 

1.0126(0.0146) 
1.0127(0.0147) 

1.5066(0.0145) 
1.5083(0.0147) 

2.0077(0.0143) 
2.0085(0.0145) 

BEG 
BEU 

1.0128(0.0147) 
1.0128(0.0148) 

1.5085(0.0148) 
1.5087(0.0148) 

2.0086(0.0146) 
2.0087(0.0146) 

100 
ML 1.0107(0.0116) 1.5045(0.0115) 2.0049(0.0113) 

BLG 
BLU 

1.0101(0.0114) 
1.0106(0.0115) 

1.5027(0.0113) 
1.5043(0.0114) 

2.0041(0.0112) 
2.0047(0.0113) 

BEG 
BEU 

1.0106(0.0115) 
1.0107(0.0115) 

1.5043(0.0114) 
1.5044(0.0114) 

2.0048(0.0111) 
2.0048(0.0113) 
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5. DATA ANALYSIS 

To illustrate the estimation techniques developed in this article, we consider the 
following two data sets.  

Example 1. The data set is about Buoy-46005 which is available online from 
National Data Buoy Center (NDBC), situated in the North East Pacific: (46 N, 
131 W). The data set consist of 21 (moderate sample size) observations and is 
presented in Table 3. 

Table 3: Dataset (Buoy 46005): Yearly maxima of Hs (m). 
10.70 10.70 7.00 11.30 13.60 11.70 8.20 
12.00 9.30 8.80 11.00 11.90 9.20 8.71 

9.63 9.87 13.04 9.79 12.26 11.52 12.92 

 

Table 4: Point estimates and standard deviations (SD) of α and β for Example 1. 
Estimator α SD β SD 

ML 5.6196 0.8661 9.6109 0.3968 
BLG 5.7545 0.8531 9.8389 0.3950 
BLU 5.4108 0.8661 9.8340 0.3968 

BEG 5.7987 0.8535 9.9330 0.3951 
BEU 5.9226 0.8661 9.9284 0.3968 

 
The point estimates of   and  obtained by all the methods are presented in 
Table 4. In this case, all the estimates are close to the MLE.  Since the Bayesian 
estimators of the model parameters cannot be obtained analytically, approximate  
Bayesian estimates are obtained numerically using Lindley approximation with 

0.5c = . We use non-informative priors with all the hyper parameters equal to 
zero, i.e.,  for Bayes estimates. We also plot the 
empirical and fitted CDFs using these different methods of estimation in Figure1. 
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Empirical and fitted CDFs using different methods of estimation: (a) BLG, (b) 

BLU, (c) BEG and (d) BEU. 
 
Example 2.  This example is from Nichols and Padgett (2006), which represents 
the breaking stress of carbon fibres (in Gba). The data consist of 100 (large 
sample size) observations. The data are presented in Table 5.     
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Table 5: Breaking stress of carbon fibres (in Gba). 
3.7 2.73 3.6 3.27 1.47 4.42 
3.22 3.28 1.87 4.9 2.43 2.97 
2.53 2.93 3.39 4.2 2.55 3.31 
3.56 2.35 2.59 2.81 2.17 1.92 
2.97 0.98 4.91 1.84 3.19 0.81 
1.59 1.22 1.71 1.17 2.48 3.51 
1.25 1.84 3.68 0.85 2.79 2.03 
1.08 1.61 1.89 2.82 3.65 2.85 
2.74 2.5 3.11 2.87 3.11 2.56 
1.69 3.09 3.15 3.75 2.95 1.41 
2.67 3.22 2.81 3.33 3.31 5.56 
3.15 2.55 2.38 2.77 2.83 2.17 
1.36 2.76 3.68 1.59 1.57 1.8 
2.0 1.12 2.17 5.08 1.18 3.68 
4.38 0.39 2.48 1.61 4.7 1.73 
2.03 2.12 2.88 2.05 1.69 1.57 
2.41 3.19 3.39 2.96   

Table 6: Point estimates and standard deviations (SD) of α and β for Example 2. 
Estimator α SD β SD 

ML 1.7690 0.1119 1.8916 0.1138 
BLG 1.7528 0.1114 1.8886 0.1134 
BLU 1.7577 0.1119 1.8929 0.1137 
BEG 1.7467 0.1112 1.9007 0.1135 
BEU 1.7545 0.1118 1.9052 0.1138 

  
For this example, posterior means and posterior standard deviations (SD) of the 
two parameters α and β are computed assuming the non-informative priors for 
each parameter under LINEX loss function and general entropy loss function and 
results are summarized in Table 6. We choose the shape parameter c=1.0 and it is 
observed that the Bayesian estimates under general entropy loss function and 
LINEX loss function are close to the MLEs. 

5. CONCLUSION 

In this paper, we present Bayesian estimates of the two parameter of Frechet 
distribution using various loss functions and non-informative priors. It is 
observed that the Bayesian estimators cannot be obtained in explicit forms. 
Lindley’s approximation is used to obtain the Bayesian estimates numerically, 
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and it is concluded that the approximation works very well even for small sample 
sizes though the computation of Lindley’s approximation based on the MLEs.  
Comparisons are made between the different estimators based on a simulation 
study and real data sets considering different values of shape parameter. 
Simulations showed that the Bayesian estimators under general entropy loss 
function and LINEX loss function perform better than the MLEs. However, it is 
observed that for large sample sizes the Bayesian and MLEs become closer in 
terms of their MSEs and standard deviations.  
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6. APPENDIX 

For Bayesian estimation, we need prior distribution of  α  andβ . Assuming that 

α  and β  each have independent Gamma (a1, b1) and Gamma (a2, b2) priors 

respectively for (a1,b1,a2,b2>0), i.e., βα ββπααπ 2211 1
2

1
1 )()( baba eande −−−− ∝∝ . 

Based on the priors, the joint posterior density of α  andβ  can be written as  
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It is not possible for (13) to have a closed form. Therefore, we adopt Lindley’s 
approximation (1980) procedure to approximate the ratio of the two integrals 
such as (13), which can be evaluated as  
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where 

l(.) is the log likelihood function of the observed data, ijs is the (i ,j)th element of 

the inverse of Fisher’s information matrix. Therefore, the approximate Bayesian 
estimators of α  and β  under LINEX loss function are   
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where α̂  andβ̂  are the MLEs of α  andβ . Similarly, the approximate Bayesian 

estimators of α  andβ under LINEX loss function and general entropy loss 

function using general uniform priors i.e., 1
3 )( a−∝ ααπ and 1

4 )( b−∝ ββπ can be 

obtained. 
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