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ABSTRACT

This paper develops the Bayesian estimators fouttkmown parameters
of Frechet distribution under different asymmetidss functions. The
Bayesian estimators cannot be obtained in closedsfoAn approximate
Bayesian approach is proposed using Lindley’'s appration to obtain

the Bayesian estimates. The approximate Bayes a&ssnobtained under
the assumption of non-informative priors are coragamwith their

maximum likelihood estimates via Monte Carlo sintigia study. Two real

data sets are analyzed for illustrative purposes.

1. INTRODUCTION

Frechet distribution was introduced by French matkiecian Maurice Frechet

(1878-1973), who identified possible limit distrtion for the largest order

statistic during 1927. The Frechet distribution dadveen used as an useful
method for modeling and analyzing several extrerrens such as accelerated
life testing, earthquake, flood, rainfall, sea eutrand wind speed. Therefore,
Frechet distribution is well suited to characterimmdom variables of large
features. The random variable X is said to follovirrechet distribution with

parametere and £ if the cumulative distribution function (CDF) isvgn by

F(x|a.ﬂ)=exp[— (g)”} x>0, a,5>0, (1)

Therefore, the corresponding probability densityction (PDF) of the Frechet
distribution is;

f(x|a, ) =3(£Ja+ ex;{— (ﬁ)”} x>0, @)
L X X

where the parametardetermines the shape of the distribution Ani$ the scale
parameter. Frechet distribution is equivalent kinig the reciprocal of values
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from a standard Weibull distribution. The Frechestribution has been
extensively studied by different authors; see, éxample, Harlow (2002)
suggested that it is important for modeling thdistiaal behavior of materials
properties for a variety of engineering. Nadarajald Kotz (2008) discussed the
sociological models based on Frechet random vasalfiurther, Zaharim et al.
(2009), abbas and Tang (2014) and Mubarak (20d@)jexl the application of
Frechet distributionAbbas and Tang (2013) estimated the parametersechét
distribution based on type-ll censored samples. ddeer, Gumbel (1965)
estimated the parameter of Frechet distributiorbasband Tang (2012) studied
different estimation methods for Frechet distribntwith known shape. Mann
(1984) discussed the estimation procedures for Rhechet and the three-
parameter Weibull distribution. The relationshiggvieen Frechet, Weibull and
the Gumbel distribution were also discussed. Furtthee maximume-likelihood
and moment estimators as well as linearly basecha&strs involving only a few
order statistics and properties for large and ssethples were also discussed.
However, Bayesian estimation under different lasscfions is not frequently
discussed. Perhaps, the Bayesian estimators unifferedt loss functions
involve integral expressions, which are not aneffty solvable. In order to
reduce the difficult integrals that are in the postr distribution which cannot
explicitty be obtained in close form. Therefore, vemployed Lindley’'s
approximation technique for solving such problems.

The main aim of this paper is to develop the Bayeséstimators of the
parameters of Frechet distribution under differtogs functions using non-
informative priors. The rest of the paper unfoldsfallows. In Section 2, the
maximum likelihood estimators (MLES) and observéshEr information matrix
for parameters are derived. Bayesian estimation eundINEX (linear
exponential) loss function and general entropy lhssction is discussed in
Section 3. Monte Carlo simulation study is presgénteSection 4 to assess the
performance of Bayesian and MLEs in terms of meprared error (MSE). Two
real data sets are analyzed in Section 5 andicalhclusion is given in Section
6.

2. MAXIMUM LIKELIHOOD ESTIMATION

LetX = X,,X,,....X, be a random sample of size from the Frechet
distribution (2). The likelihood function ¢&, £) is
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L(a’ ,B)—a ﬁnal_lx —-(a+1) ex;{ Z(ﬁ j|

Then the log-likelihood function can be written as

IogL:nloga+nalog,8-(a+1)zn:|ogxi-Zn:[xﬁJ : (3)
and

dlogL _n 3 (B ! B

5q g MogB ;logxi Zl(xj log(xi) (4)

dlogL _a| ﬁa
da _E[n zl[x] } ©

From equation (5),[3 is obtained in terms ofr in the form

= <nixr*)5 6)

Obviously it is not easy to obtain the closed fawohution for the two non-linear
equations (4) and (6). We use BFGS quasi-Newtormigstion method to
compute MLEs. Further, the observed Fisher infolonamatrix is obtained by
taking the second and mixed partial derivativefozfl. with respect tax andg.
We have

_0%logL _9%logL

_ da? 0aop
(@)= _9%logL _ 8%logL
900 p°

where

azlogL__L_”ﬁa ﬁz
ot =3 ) o)

0°logL __na _a(@-1) [ﬁjaz

B B P X,
d%logL _d%logL _n _ay ﬁ”lo B 1u(BY
dadB  opoa B B Ix ) 8% %
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3. BAYESIAN ESTIMATION

In Bayesian estimation, we consider two types 6§ lfunctions. The first one is
LINEX loss function, which is asymmetric. The LINEKss function was
introduced by Varian (1975), and several authaushsas Basu and Ebrahimi
(1991), Rojo (1987) and Nassar and Eissa (2004 haed this loss function in
different estimation problems. This function risggproximately exponentially
on one side of zero and approximately linearlyl@dther side. The LINEX loss
function can be expressed as

L(A) Oe* -cA-1,c#0, (7)
whereA =(é—6)and @ is an estimate @. The sign and magnitude of the
shape parameterc represents the direction and degree of symmetry,
respectively. Moreover, i€ > 0the overestimation is more serious compared to
the under estimation and vice-versa. Forclose to zero, the LINEX loss is
approximately squared error loss and therefore slisgmmetric. The posterior
expectation of the LINEX loss function (7) is

E,|L(6-6)|0 ek, |e?]-c(é-E,(6)) -1 8)
where E,([) denotes the posterior expectation with respecth&o posterior

density off. The Bayes estimator 6f denoted b)@BLunder LINEX loss

function, is the valué, which minimizes (8). It is
Gy = —llog{Eg [e‘w]}, )
c

provided that the expectatiﬁg[e‘“e Jexists and is finite. The problem of
choosing the value of the parameteris discussed in Calabria and Pulcini
(1996). The second type of loss function is theegalization of the entropy loss,
which is discussed by Dey and Liu (1992) and D&8{). The general entropy
loss is defined as
A\ C N
L (6-6)0 (gj - clog(gJ -1, (10)

whereé is an estimate of. The Bayes estimator relative to the general egtrop
loss function is

ol

Bge =[E(@)] ©, (12)
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provided that E(8™° gxists and is finite. Forc= the Bayes estimator (11)

coincides with the Bayes estimator under the weighsquared error loss
function, and forc=- the Bayes estimator (11) coincides with the Bayes
estimator under the squared error loss functionthBy, the Bayesian estimators
under LINEX loss function and general entropy lfssction are presented in
Appendix.

4. SSIMULATION STUDY

Simulation study is conducted in order to compdre performance of the
presented Bayesian estimators with the known nogre8aestimator such as
MLE. Since the Bayesian estimators of the modehpaters cannot be obtained
analytically, approximate Bayesian estimates arenmaed using Lindley

approximation. In computing the estimates samples generated from the
1

Frechet distribution using the transformatin=£(-InU,) @ where U,is
uniformly distributed random variable and we regléd the process 5000 times
for each sample size and the average of estinmtesmputed. For Bayesian
estimators, we consider thatand S each have independent Gamfagb,) and

Gamma(ah,) priors. Further, the Bayesian estimators afand £ are also

obtained using general uniform priors. We use treps paramete€¢ =1.5 and
non-informative priors of bothw and 3, i.e., a=&=b;=b,=0. Comparison are

made in terms of means and MSEs (with in parerdhesid results are presented
in Tables 1 and 2. Some of the points are quitarakegarding the performance
of the estimators, which are summarized below.

1. As expected, it is observed that the performanédsth Bayesian and
MLEs become better when sample size increased. I8asize is varied
to see the effect of small and large samples orgkimators considering
fixed values of parameters. Moreover, it is obsembeat for large sample
sizes, the Bayesian estimates and MLEs becomercloséerms of
MSEs, because for large sample sizes the effeptiof on posterior is
minimal.

2. The Bayesian estimators under general entropyflmssion and LINEX
loss function perform better than MLEs obtainedusing Gamma priors
and general Uniform priors in terms of their MSkE&th all the hyper
parameters equal to zero, i.es@&=b;=b,=0. From Tables 1 and 2, we
can see that in each scenario, the Bayesian estsnamder assumption
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of general entropy loss function and LINEX lossdtion outperform the
MLEs since MSEs are significantly smaller whatetrex value of shape
parameterc.

3. Considering Tables 1 and 2, we noticed that Bayesstimators worked
remarkable well under general entropy loss fmcnd LINEX loss
function with respect to MSEs. As the sample sim@dases, the MSE
values of the general entropy loss function and BXNloss function
decreases to smaller values than any of the othérg must be stated
that the others also have their MSE values decrgasith increasing
sample size.

Notations:

BLG: Bayesiarestimators under LINEX loss function using Gammarpr

BLU: Bayesianestimators under LINEX loss function using genddaiform
prior.

BEG. Bayesianestimators under general entropy loss function gusdamma
prior.

BEU: Bayesianestimators under general entropy loss function gugieneral

Uniform prior.

Table 1: Average estimates and corresponding MSEs (Wigranenthesis) fod.

n Estimator
| a— 1.0 1.5 2.0

20 ML 1.0768(0.0489) 1.6112(0.1050) 1.1622(0.2002)
BLG 1.0405(0.0458) 1.5648(0.1014) 2.1029(0.1997)
BLU 1.0619(0.0487) 1.6034(0.1047) 2.1593(0.2001)
BEG 1.0248(0.0408) 1.5217(0.0843) 2.0178(0.1535)
BEU 1.0459(0.0451) 1.5599(0.0932) 2.0737(0.1696)

30 ML 1.0490(0.0267) 1.5691(0.0603) 2.1023(0.1130)
BLG 1.0244(0.0253) 1.5373(0.0585) 2.0611(0.1110)
BLU 1.0377(0.0265) 1.5616(0.0602) 2.0970(0.1118)
BEG 1.0150(0.0235) 1.5111(0.0523) 2.0094(0.0944)
BEU 1.0282(0.0251) 1.5352(0.0557) 2.0448(0.1006)

50 ML 1.0318(0.0152) 1.5426(0.0316) 2.0554(0.0582)
BLG 1.0169(0.0146) 1.5233(0.0308) 2.0300(0.0573)
BLU 1.0246(0.0152) 1.5374(0.0314) 2.0506(0.0580)
BEG 1.0116(0.0140) 1.5085(0.0288) 2.0018(0.0525)
BEU 1.0192(0.0146) 1.5225(0.0299) 2.0215(0.0543)

80 ML 1.0162(0.0082) 1.5266(0.0198) 2.0324(0.0333)
BLG 1.0069(0.0080) 1.5145(0.0193) 2.0164(0.0329)
BLU 1.0115(0.0081) 1.5230(0.0197) 2.0289(0.0332)
BEG 1.0037(0.0078) 1.5055(0.0186) 2.0014(0.0312)
BEU 1.0083(0.0080) 1.5140(0.0190) 2.0114(0.0318)
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100 ML 1.0129(0.0067) 1.5209(0.0144 2.0327(0.0268
BLG 1.0054(0.0065) 1.5112(0.0142) | 2.0198(0.0264)
BLU 1.0091(0.0066) 1.5180(0.0142) | 2.0298(0.0266)
BEG 1.0030(0.0063) | 1.5042(0.0138) | 2.0010(0.0251)
BEU 1.0066(0.0065) 1.5109(0.0140) | 2.0159(0.0257)
Table 2: Average estimates and corresponding MSEs (Wiganmenthesis) fop.
n Estimator
Ip— 1.0 1.5 2.0
20 ML 1.0452(0.0698) 1.5404(0.0640) 2.0367(0.0611)
BLG 1.0404(0.0655) 1.5313(0.0615) 2.0333(0.0604)
BLU 1.0450(0.0696) 1.5401(0.0638) 2.0360(0.0609)
BEG 1.0449(0.0688) 1.5400(0.0636) 2.0364(0.0608)
BEU 1.0451(0.0695) 1.5402(0.0637) 2.0366(0.0610)
30 ML 1.0376(0.0449) 1.5303(0.0420) 2.0223(0.0403)
BLG 1.0349(0.0431) 1.5242(0.0409) 2.0199(0.0385)
BLU 1.0357(0.0447) 1.5300(0.0416) 2.0219(0.0400)
BEG 1.0363(0.0446) 1.5301(0.0417) 2.0221(0.0401)
BEU 1.0366(0.0448) 1.5302(0.0418) 2.0222(0.0402)
50 ML 1.0222(0.0245) 1.5123(0.0232) 2.0143(0.0234)
BLG 1.0216(0.0241) 1.5088(0.0229) 2.0127(0.0226)
BLU 1.0219(0.0244) 1.5121(0.0230) 2.0140(0.0228)
BEG 1.0220(0.0242) 1.5126(0.0231) 2.0141(0.0230)
BEU 1.0221(0.0243) 1.5122(0.0231) 2.0142(0.0231)
80
ML 1.0129(0.0149) 1.5088(0.0153) 2.0087(0.0147)
BLG 1.0126(0.0146) |  1.5066(0.0145) 2.0077(0.0143)
BLU 1.0127(0.0147) 1.5083(0.0147) 2.0085(0.0145)
BEG 1.0128(0.0147) 1.5085(0.0148) 2.0086(0.0146)
BEU 1.0128(0.0148) 1.5087(0.0148) 2.0087(0.0146)
100
ML 1.0107(0.0116) 1.5045(0.0115) 2.0049(0.0113)
BLG 1.0101(0.0114) 1.5027(0.0113) 2.0041(0.0112)
BLU 1.0106(0.0115) 1.5043(0.0114) 2.0047(0.0113)
BEG 1.0106(0.0115) 1.5043(0.0114) 2.0048(0.0111)
BEU 1.0107(0.0115) 1.5044(0.0114) 2.0048(0.0113)
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5. DATA ANALYSIS

To illustrate the estimation techniques developethis article, we consider the
following two data sets.

Example 1. The data set is about Buoy-46005 which is availaivikne from
National Data Buoy Center (NDBC), situated in thertN East Pacific: (46 N,

131 W). The data set consist of 21 (moderate sasip& observations and is
presented in Table 3.

Table 3: Dataset (Buoy 46005): Yearly maxima of Hs (m).

10.70

10.70

7.00

11.30 13.60 11.70 8.20
12.00 9.30 8.80 11.00 11.90 9.20 8.71
9.63 9.87 13.04 9.79 12.26 11.52 12.92

Table 4: Point estimates and standard deviations (S@)arfdf for Example 1.

Estimator a SD B SD
ML 5.6196 0.8661 9.6109 0.3968
BLG 5.7545 0.8531 9.8389 0.3950
BLU 5.4108 0.8661 9.8340 0.3968
BEG 5.7987 0.8535 9.9330 0.3951
BEU 5.9226 0.8661 9.9284 0.3968

The point estimates ofe and g obtained by all the methods are presented in
Table 4. In this case, all the estimates are dimske MLE. Since the Bayesian
estimators of the model parameters cannot be @utainalytically, approximate
Bayesian estimates are obtained numerically usindléy approximation with

¢ =0.5. We use non-informative priors with all the hygmrameters equal to
zero, i.e.a; = a; = b, = b, =0, for Bayes estimates. We also plot the
empirical and fitted CDFs using these differentimes of estimation in Figurel.
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Empirical and fitted CDFs using different methodsestimation: (a) BLG, (b)

BLU, (c) BEG and (d) BEU.
Example 2. This example is from Nichols and Padgett (2006)ictvinepresents

the breaking stress of carbon fibres (in Gba). @& consist of 100 (large
sample size) observations. The data are presanifeabie 5.
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Table5: Breaking stress of carbon fibres (in Gba).

3.7 2.73 3.6 3.27 1.47 4.42
3.22 3.28 1.87 4.9 2.43 2.97
2.53 2.93 3.39 4.2 2.55 3.31
3.56 2.35 2.59 2.81 2.17 1.92
2.97 0.98 491 1.84 3.19 0.81
1.59 1.22 1.71 1.17 2.48 3.51
1.25 1.84 3.68 0.85 2.79 2.03
1.08 1.61 1.89 2.82 3.65 2.85
2.74 2.5 3.11 2.87 3.11 2.56
1.69 3.09 3.15 3.75 2.95 1.41
2.67 3.22 281 3.33 3.31 5.56
3.15 2.55 2.38 2.77 2.83 2.17
1.36 2.76 3.68 1.59 1.57 1.8
2.0 1.12 2.17 5.08 1.18 3.68
4.38 0.39 2.48 1.61 4.7 1.73
2.03 2.12 2.88 2.05 1.69 1.57
241 3.19 3.39 2.96
Table 6: Point estimates and standard deviations (S)aidp for Example 2.
Estimator a SD B SD
ML 1.7690 0.1119 1.8916 0.1138
BLG 1.7528 0.1114 1.8886 0.1134
BLU 1.7577 0.1119 1.8929 0.1137
BEG 1.7467 0.1112 1.9007 0.1135
BEU 1.7545 0.1118 1.9052 0.1138

For this example, posterior means and posteriodsta deviations (SD) of the

two parameters. andp are computed assuming the non-informative priors f
each parameter under LINEX loss function and germeraopy loss function and

results are summarized in Table 6. We choose thgesparameter c=1.0 and it is
observed that the Bayesian estimates under geaptadpy loss function and

LINEX loss function are close to the MLEs.

5. CONCLUSION

In this paper, we present Bayesian estimates otwloeparameter of Frechet
distribution using various loss functions and nofoimative priors. It is

observed that the Bayesian estimators cannot bainelot in explicit forms.

Lindley’s approximation is used to obtain the Bagesestimates numerically,
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and it is concluded that the approximation worky/weell even for small sample
sizes though the computation of Lindley’s approxiora based on the MLEs.

Comparisons are made between the different estimdtmsed on a simulation
study and real data sets considering different esmlof shape parameter.
Simulations showed that the Bayesian estimatorsumg@neral entropy loss
function and LINEX loss function perform better thdne MLEs. However, it is

observed that for large sample sizes the BayesidnMiLEs become closer in
terms of their MSEs and standard deviations.
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6. APPENDI X

For Bayesian estimation, we need prior distributéna andf . Assuming that
a and [ each have independent Gamma @) and Gamma ¢ b,) priors
respectively for (aby,a,b,>0),i.e., 75 (a) Da*™e™" and 7z,(B)0 3% ‘™.
Based on the priors, the joint posterior densityrondf can be written as

102



Bayesian estimation of frechet distribution under asymmetric loss functions

L(data|a, B)n,(a)n,(B)
['[ Lcatala, By (a)rm,(B) dads

Therefore, the Bayesian estimator of any functibnao and Ssay g(a, ()
under the LINEX loss function is

5 ['[ 9t@.p L(data @, By (a) 7, (B) dadlB
G, B1%) = E (g paa[9(a, B)] = 22—
[[[ L(datel @, oy, (@), ()dadp

13)
It is not possible for (13) to have a closed foitherefore, we adopt Lindley’s
approximation (1980) procedure to approximate t#orof the two integrals
such as (13), which can be evaluated as

A ~ 2 12 2
g=g9 (0" ,3)"'5 [Zizlzjzlvij Sij +VaoAp +Vo3Ayy V5B, +VBy [+ RC,, PCy

f(a,Blx) =

(12)

(14)
i+]
where v; =9 1@p) Ij= 0123 i+j=3
9a' 0B’
_Ologma,B) , _0dlogma,p)
L e
a )4

V12 0008 't a
=029(a.ﬂ)'v _0°g(a.B)

_0%9(@.p) , _9%9(a.p)

11 302 22 5?
v. =99@.p) |, _99(a.pB)
1 Vo

oa )4
A - (visi + Vjﬁj)ﬁi
Bj - 3visi s Vv, (Sii Sji +2$ijz)
Cj =viS; +v;s;.1, ] =12,

where
I(.) is the log likelihood function of the observedlta, s; is the(i ,j)th element of

the inverse of Fisher’s information matrix. Therefothe approximate Bayesian
estimators ofr and £ under LINEX loss function are
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e +l{cze_ca St Ce_cavsoslzl - Ce_C‘;VosSZZSll }
~ 1| 2 |+ 35,8, V,, 8 —V,,Ce S, + 23122
BLG __E 0g 1 1
N - . a —
- ce‘°"sll(aﬂ - blj - ce‘“’slz[ z_T— bZJ
N 1 {Cze_w Sy, — C& FVy08,,8;, — C& VS5, }
Bos = 1 log 2 [~ (881 *+ 253V, —35,,8,,v,c8™
BLG c A o -1 A Y1
-ce¥s,| 2—-b, |-ce¥s,| Z—-h,
a

The Bayesian estimators @f and S under general entropy loss function are

A

2

1
ac +:_L o(C+Da™ s, —ca vy Sy —Ca VS, 8, | | ©
.= 2 #3885, V0007 s, + 28],
BEG — y
A —(c+ _l A~ —(c* _1
-ca™ 1)811(31& _Q]_Ca( 1)512(%3 _sz
_ 4.1
[3‘0 +1{C(C +1),8_(c+2)522 - C:B_(C+1)V30312511 - C:B_(Hl)vosszzz} ¢
,[3 = 2 |- (522511 + 25122)V21C,8_(°+1) - 3512522V120ﬁ_(c+1)
BEG
_ é—(cﬂ)sn( aié;l _ le _ Cﬁ—(c+1)szz[% :1 _ sz
where
a ~ N3 ~ ~n, A n a
V30:%2+ n ﬁ Iogﬁ ’VOS:ZEIG'_G'(G:_].) ﬁ )
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Bayesian estimation of frechet distribution under asymmetric loss functions

where a andﬁ’ are the MLEs ofo andg . Similarly, the approximate Bayesian
estimators ofa andf under LINEX loss function and general entropy loss

function using general uniform priore., 7z,(a) O a * and 77,(8) O S ™ can be
obtained.
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