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A Bi-OBJECTIVE COST FUNCTION IN MULTIVARIATE STRATIFIED 
SURVEYS 

Shamsher Khan and M. M. Khalid 

ABSTRACT 

This paper studies the problem of optimal allocation for multivariate 
stratified survey as a bi-objective programming problem with the objective 
to minimize the costs (i.e. measurement and travel) incurred in the survey 
subject to precision constraint for each characteristic. The unitary cost of 
measurement and travel are considered as normally distributed random 
variables. Population variances are assumed to be unknown and replaced 
by sample variances which are also normally distributed random variables. 
The precision for each characteristic is specified as multi-choice. To 
remove the randomness from objective functions, Expected Value 
Standard Deviation (EVSD) criterion is applied after converting the bi-
objective problem into a single objective problem. Chance constraint 
programming technique is then used for deterministic equivalent of 
constraints. Thus, the problem of optimal allocation is treated as Stochastic 
Bi-objective Programming Problem (SBOPP) with multi-choice in right 
hand side.  A numerical illustration is also given for the demonstration of 
proposed approach solved by Lingo Software.   
 

1. INTRODUCTION 

Stratified sampling is the most commonly used sampling design in probability 
sampling. For stratification past data may be used to divide a heterogeneous 
population into groups such that the units within each group or strata are alike, 
Hansen et al. (1953). 

Before using the stratified sampling the sampler must have the answer to the 
following questions: 
 

   i) How many strata should be there? 
  ii) What should be the strata boundaries?  
 iii) How many units are to be selected from each stratum? 
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The third problem which is known as the allocation problem is considered here 
with the assumption that the population under study has been already stratified 
 into a number of strata with known strata boundaries and the sampling frame of 
all the strata are available. An allocation will be the best allocation that can 
minimize the variance of estimator of the population parameter for a given cost 
of survey or minimize the cost of the survey for desired precision of the estimate. 
There are some factors which affect the allocation scheme such as the variance of 
the population, cost of obtaining an observation from each stratum and the degree 
of precision. If the population variance is unknown, it can be estimated from a 
preliminary sample and the estimated variance is used in place of population 
variance, Sukhatme et al. (1984). Diaz-Garcia and Gary-Tapia (2007) worked out 
with estimated variance in univariate survey when population variance was 
unknown and replaced by sample variance. They considered the problem of 
optimal allocation as a non-linear stochastic programming problem. Diaz-Garcia 
and Gary-Tapia showed that in stratified random sampling the sample variance 
has asymptotic normal distribution on the basis of the result given by Melaku 
(1986). Fatima et al. (2014) extended this work for multivariate case by 
formulating the problem of optimal allocation as a multi-objective programming 
problem and solved it by goal programming technique.  
In stratified sampling the population havingN units is divided into L  non-

overlapping and exhaustive groups called strata having 1 2 3, , ,..., LN N N N  units 

respectively (symbols have their usual meaning as in Cochran (1977), otherwise 
stateded).These subpopulations are called strata. Let hn  be the size of sample 

allocated to thh stratum then the general cost function in multivariate survey is 
given as 

0
=1

( )
L

h h
h

C n c c n= +∑                                  (1) 

where hc is the sampling cost per unit associated to the thh stratum.  The term 

0c represents an overhead cost.  

If the travel costs between units of a stratum are significant then Beardwood et 
al. (1959) suggested that the total travel cost is better represented by the 

expression
1

L
h nh

t n=∑ ; where ht  is the travel cost per unit in the thh stratum. 

This expression is quadratic inhn .  
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Some authors worked on the problem of optimal allocation in multivariate 
surveys with quadratic cost such as Khowaja et al. (2012), Ghufran et al. (2012) 
by considering the cost function in the form 

0
=1 =1

( )
L L

h h h n
h h

C n c c n t n= + +∑ ∑
  
                       (2) 

The cost of measurement, which varies from stratum to stratum during the course 
of survey and affected due to random causes, such as raining, weather conditions 
etc; can be considered as random variable. The cost of travel between units is 
also affected by some factors that are out of control of the sampler such as area of 
survey, condition of the road, modes of travel etc. Thus the travel costs can also 
be considered as random variables. Some authors worked out with random costs 
(measurement and travel) to obtain the optimal allocation in multivariate survey 
with linear and/or nonlinear cost function such as Bakhshi et al. (2010), Javaid et 
al. (2011), Ali et al. (2011) by treating the cost as a normally distributed random 
variable but for the first time the total cost is considered as bi-objective function 
instead of a quadratic function. Another feature of this paper is the consideration 
of precision of estimates as multi choice, Khan and Khalid (2013). 
Thus in this work, the problem of optimal allocation is formulated as a SBOPP to 
minimize both the costs simultaneously with chance constraint which has multi-
choice in the right hand side. The per unit cost of measurement and the travel 
cost are considered as independently normally distributed random variables. The 
population variances are supposed to be unknown and replaced by sample 
variances which are also random variables with asymptotic normal distribution. 

2. FORMULATION OF THE PROBLEM 

The problem of optimal allocation to minimize the quadratic cost function for the 
desired degree of the precision for the estimate of the population parameter for 
each characteristic can be treated as a mathematical programming problem and 
stated as follows 

Minimize 0
=1 =1

( )
L L

h h h n
h h

C n c c n t n= + +∑ ∑  

Subject to ( )jst jV y v≤ o  1,2,3,...,j p∀ =  

 and  2 h hn N≤ ≤ ;                         (3) 

We considered that the costs of measurement ( 1,2,3,..., )hc h L=  and the travel 

costs ( 1,2,3,..., )ht h L=  are normally distributed random variables and the RHS of 
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the thj constraint has jk number of choices and out of these choices one must be 

selected by respective constraint with a specified probability jpo . 

Our assumption is the consideartion of quadratic cost function as a bi-objective 
function then the problem of optimum allocation as a SBOPP will be  

Minimize { }1 2
=1 =1

( ) = ( ), ( ) ,
L L

h h h h h n
h h

C n C n C n c n t n
  =  
  
∑ ∑  

Subject to 0Var( )   1,2,3,...,jst j jP y v p j p ≤ ≥ ∀ =
 

o
)

; and { }( )(1) (2) (3)0 , , ,...,
k j

j j j j jv v v v v∈  

                                2 h hn N≤ ≤ ;                                                               (4) 

where 
2 2 2 2

1 1

Var( )
L L

h jh h jh
jst

h hh h

W s W s
y

n N= =
= −∑ ∑

)

 
is estimated variance forthj characteristic. The term 0c  is removed because 

overhead cost is not the part of optimization Kokan (1963). 

The expression of variance function Var( )jsty
)

in the problem (4) indicates that we 

are using the estimated variance at the place of population variance which is 
unknown, Diaz-Garcia and Gary-Tapia (2007). 

 

3. SOLUTION METHODS 

Suppose that the mean and variance of the normally distributed costs hc and 

ht are as follows  
     mean ( )h hE c c= and variance 2( )h ch

Var c σ= ;  

     mean ( )h hE t t= and variance 2( ) ;h th
Var t σ=  

    i.e. ( )2,h h ch
c N c σ� and ( )2,h h th

t N t σ�  

If we have the quadratic cost function as given in the equation (2) with random 
parameters, then optimum allocation can be obtained by solving its deterministic 
equivalent of the objective function in the form  

Minimize 1 2 Var ( )k C k C+ ; 
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where 1k and 2k are the non-negative constants whose values indicate the relative 

importance of mean value C and standard deviation Var ( )C (see Rao (1978)). 

Without loss of generality we can take1 2 1k k+ = . 

In our case, we have a bi-objective problem with random parameters so the 
existing technique of single objective mathematical programming problem can 
not be applied directly. So, our first step is to convert it into a single objective 
problem with the help of weighted sum method and secondly we remove the 
randomness by applying the expected value criterion. In order to solve the single 
objective problem an EVSD criterion developed by Bayoumi et al.(2005) is 
applied. The single objective function by weighted sum method will be  

Minimize 

{ }1 2

=1 =1

( ) = ( ) (1 ) ( )

(1 )

h h

L L

h h h n
h h

C n C n C n

c n t n

λ λ

λ λ

+ −

     = + −       
     
∑ ∑

           (5) 

3.1 Expected Value Standard Deviation (EVSD) Criteria 
The deterministic equivalent of the objective function given in equation (5) can 
be obtained by applying the expected value criterion. The expected value of the 
objective function will be 

( ) { }1 2( ) = ( ) (1 ) ( )h hE C n E C n C nλ λ+ −
=1 =1

(1 )
L L

h h h n
h h

E c n t nλ λ
     = + −       
     

∑ ∑
 

 
=1 =1

(1 )
L L

h h h n
h h

c n t nλ λ
   

= + −      
   
∑ ∑              (6) 

By using the EVSD criterion the objective function to be minimized will be  

Minimize ( ) ( ){ }( ) Var ( )E C n C n+             (7) 

where the expected value of ( )C n is given in equation (6) and the variance 

function can be calculated as follows 

 

( )
=1 =1

2 2

=1 =1

=1 =1

Var ( ) Var (1 )

Var (1 ) Var

2 (1 )Cov ,

L L

h h h n
h h

L L

h h h n
h h

L L

h h h n
h h

C n c n t n

c n t n

c n t n

λ λ

λ λ

λ λ

     = + −       
     

   
= + −      

   

    
 + −        
    

∑ ∑

∑ ∑

∑ ∑
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Consider the variance and covariance terms 

1 1 2 2
=1

Var Var( ... )
L

h h L L
h

c n c n c n c n
 

= + + +  
 
∑ 2 2

=1

=
L

h ch
h

n σ∑   

1 1 2 2
=1

Var Var( ... )
L

h n L L
h

t n t n t n t n
 

= + + +  
 
∑ 2

=1

=
L

h th
h

n σ∑ . 

The covariance term will vanish as we assume that the costs are independentally 
distributed random variables. Thus the variance function will take the from as 

( ) 2 2 2 2 2

=1 =1

Var ( ) (1 )
L L

h hc th h
h h

C n n nλ σ λ σ
   

= + −      
   
∑ ∑

           
(8) 

Substituting these values of ( )( )E C n  and ( )Var ( )C n , our objective will become 

Minimize ( ) ( ){ }
=1 =1

( ) Var ( ) (1 )
L L

h h h n
h h

E C n C n c n t nλ λ
   

+ = + −      
   
∑ ∑  

                     2 2 2 2 2

=1 =1

(1 )
L L

h hc th h
h h

n nλ σ λ σ
   

+ + −      
   
∑ ∑   ……(9) 

4. CONVERSION OF CHANCE CONSTRAINT INTO ITS 
DETERMINISTIC EQUIVALENT AND MULTI CHOICE RHS INTO 

STANDARD CONSTRAINT 

The deterministic equivalent of the constraint having random variables is 
obtianed by the chance constraint programming technique and the RHS of the 
constraint is transformed into as standard mathematical programminh problem by 
using the technique developed by Acharya and Biswal (2011). 
Diaz-Garcia and Gary-Tapia (2007), considered the univariate case of stratified 
sampling. Our problem is multivariate, so the deterministic equivalent of the 
constraints  

0Var( ) ;jst j jP y v p ≤ ≥
 

o
) { }( )(1) (2) (3)0 , , ,...,

k j
j j j j jv v v v v∈  

will be   

          
( ) ( )Var( ) Var Var( )jst j jst jE y K y v+ ≤ o
) )

; { }( )(1) (2) (3)0 , , ,...,
k j

j j j j jv v v v v∈          (10) 

where 
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( ) ( )

( ) ( )

2
2 2

1 1

2
4 2

4 2 2 4 2 2
2 2 2

1 1

Var( ) Var Var( )

( 1) 1

( ) ( ) ;
( 1) ( 1)

jst j jst

L L
h h h

jh jh
h hh h

L L
h h h

j jyh jh jyh jh
h hh h h

E y K y

W W n
S S

n N n

W W n
K C S C S

n n N n

= =

= =

+

 
= −  − − 

  
 + − − − 

  − −  

∑ ∑

∑ ∑

) )

 

and 4 4

1

1
( )

Nh

jyh hij hj
h i

C y Y
N =

= −∑ are the fourth moments about stratum means for 

each characteristic.  

The symbol ‘ jK ’ stands for the value of standard normal random variable such 

that 0( )j jK pΦ = , in such a way that the inequality can be established as  

  
( )
( )

0 Var( )
( )

Var Var( )

j jst
j

jst

v E y
K

y

 − Φ ≥ Φ 
 
 

)

)
,  

which holds only if   

  
( )
( )

0 Var( )

Var Var( )

j jst
j

jst

v E y
K

y

−
≥

)

)
. 

As we considered multi-choice precision for each characteristic, so the 
transformation of the constraints into its standard form will be in the following 
manner. 
Case (i) If 1jk = , then the constraint will be same as an ordinary constraint. 

Case (ii) If 2jk = , then the constraint will be 

 ( ) ( ) { }(1) (2)Var( ) Var Var( ) ,jst j jst j jE y K y v v+ ≤
) )

 

Out of these two goals, one must be selected. Since the total number of the 

elements in the set is 2, one binary variable (1)
jz is required.  

Introducing binary variable the constraint will be 

( ) ( ) ( )(1) (1) (1) (2)Var( ) Var Var( ) 1jst j jst j j j jE y K y z v z v+ ≤ + −
) )

  

(1)0 1jz≤ ≤  
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Case (iii) If 3,jk =  then the constraint will be  

( ) ( ) { }(1) (2) (3)Var( ) Var Var( ) , ,jst j jst j j jE y K y v v v+ ≤
) )

 
Out of these three goals, one must be selected.  

Since 1 22 2jk< < , two binary variables (1)
jz  and (2)

jz are required. So 3can be 

expressed as  
2 2

2 1

   +   
   

 or 
2 2

1 0

   +   
   

 

Hence there will be restriction on remaining one (i.e., 4 3)−  term by introducing 

an additional constraint in the problem (10). 
In this case two models are formulated with the help of two binary variables 

(1)
jz and  (2)

jz  in this manner.  

Model (a) 

( ) ( )
( )( ) ( ) ( )(1) (2) (1) (1) (2) (2) (1) (2) (3)

Var( ) Var Var( )

1 1 1 1

jst j jst

i i j i i j i i j

E y K y

z z v z z v z z v

+

≤ − − + − + −

) )

 

   (1) (2) 1j jz z+ ≤ ; (1)0 1jz≤ ≤ ; (2)0 1jz≤ ≤ . 

Model (b)  

( ) ( )
( ) ( )(1) (2) (1) (1) (2) (2) (1) (2) (3)

Var( ) Var Var( )

1 1

jst j jst

j j j j j j j j j

E y K y

z z v z z v z z v

+

≤ − + − +

) )

 

(1) (2) 1j jz z+ ≥ ; (1)0 1jz≤ ≤ ; (2)0 1jz≤ ≤ ; 

Finally, by using EVSD criteria for the objective function and by applying 
transformation techniques discussed above, we get the following problem to be 
solved 

Minimize ( ) ( ){ }( ) Var ( )E C n C n+
=1 =1

(1 )
L L

h h h n
h h

c n t nλ λ
   

= + −      
   
∑ ∑   

                                                    2 2 2 2 2

=1 =1

(1 )
L L

h hc th h
h h

n nλ σ λ σ
   + + −      
   

∑ ∑  

Subject to  
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  ( ) ( ) { }( )
Var( ) Var Var( )

k j
jst j jst jE y K y v+ ≤

) )
;   

   and            2 h hn N≤ ≤ ; hn must be integer.                           (11) 

Where jk  is the number of choice for the precision of thj characteristic. For each 

value ofλ , we get efficient solutions. 

It is also assumed that the  population variance is unknown and replaced by the 
sample variance. So the constraint in problem (10) will be  

2
2 2

1 1( 1) 1

L L
h h h

jh jh
h hh h

W W n
s s

n N n= =

 
−  − − 

∑ ∑  

( ) ( ) { }
2

4 2 ( )4 2 2 4 2 2
2 2 2

1 1

( ) ( ) .
( 1) ( 1)

L L k jh h h
j jyh jh jyh jh j

h hh h h

W W n
K C s C s v

n n N n= =

  
 + − − − ≤ 

  − −  
∑ ∑  

Bayoumi et al.(2005) also suggested that if we apply expected value standard 
deviation criterion for SBOPP and convert the bi-objective problem into single 
objective problem, then we get the set of non-dominated and efficient soltutions 
by gradually increasing the value of λ . In this way, our objective will be  

2 2

=1 =1

2

=1 =1

Min C( )

(1 )

L L

h h h ch
h h

L L

h n h th
h h

n c n n

t n n

λ σ

λ σ

  
 = +      

  
 + − +      

∑ ∑

∑ ∑

 

Subject to  
2

2 2

1 1( 1) 1

L L
h h h

jh jh
h hh h

W W n
s s

n N n= =

 
−  − − 

∑ ∑

( ) ( ) { }
2

4 2 ( )4 2 2 4 2 2
2 2 2

1 1

( ) ( )
( 1) ( 1)

L L k jh h h
j jyh jh jyh jh j

h hh h h

W W n
K C s C s v

n n N n= =

  
 + − − − ≤ 

  − −  
∑ ∑  

and 2 h hn N≤ ≤ ; hn must be integer.               (12) 

5. NUMERICAL ILLUSTRATION 

For the purpose of numerical illustration, the data given in table 1, are taken from 
Diaz-Garcia and Gary-Tapia (2007), and modified to as our requirement i.e. for 
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multivariate survey. Suppose we have three characters under study and the whole 
population is divided into four strata.  
We assume that the costs are random variables and unknown population 
variances are replaced by sample variance.  
The mean and variance of measurement costs ( 1,2,3,..., )hc h L=  are assumed as 

follows:  1( ) 25E c = , 2( ) 23E c = , 3( ) 28E c = , 4( ) 30E c =   

 1Var( ) 30c = , 2Var( ) 25c = , 3Var( ) 34c = , 4Var( ) 32c = . 

Table 1: Stratum Weights, Sample Variances, fourth moments for the three 
                  characters under study 
h  hN  hW  2

1hs  2
2hs  2

3hs  4
1hC  4

2hC  4
3hC  

1 2500 0.24 0.1694 0.1969 0.1496 0.0884 0.0848 0.0799 

2  2300 0.22 8.4317 7.7431 7.3417 330.4106 310.6041 320.1604 

3  2800 0.26 0.0972 0.0792 0.0827 0.0319 0.0400 0.0391 

4  3000 0.28 3.8590 4.5809 4.8950 34.1001 36.2314 35.0099 
 

Similarly the mean and varaiance of travel costs ( 1,2,3,..., )ht h L= are assumed as 

follows 

 1( ) 15E t = , 2( ) 13E t = , 3( ) 18E t = , 4( ) 20E t = and  

 1Var( ) 20t = , 2Var( ) 25t = , 3Var( ) 24t = , 4Var( ) 15t =  

We also assume the multi choice nature of precision i.e. each characteristic has a 
set of choices with acceptable precisions. These choices for each characteristic 
will be as follows 

{ } { }(1) (2)
1 1 1 1 1( ) , , 0.015,0.016 ;stV y v v v v≤ ∈ =o o  

{ } { }(1) (2) (3)
2 2 2 2 2 2( ) , , , 0.018,0.019,0.020 ;stV y v v v v v≤ ∈ =o o

{ } { }(1) (2) (3)
3 3 3 3 3 3( ) , , , 0.014,0.017,0.018stV y v v v v v≤ ∈ =o o  

The constraint satisfying probability 0 0.99  1, 2,3.jp j= ∀ =  

It is supposed that we need a sampling plan to minimize both the costs 
simultaneously and which ensures that the estimate for each characteristic can 
take only one value from the set of variance specified as choices for each 
characteristic. 
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After substituting these values in the problem given in (11) we solve the resulting 
problem with the help of LINGO software package (2011). By gradually 
increasing the value ofλ , we get the results given in table 2. 

Table 2: Total cost of the survey for different values of λ  

λ  1n  2n  3n  4n  1
1z  1

2z  2
2z  

1
3z

 
2
3z  Cost (n)C  

0.0 08  67  06  145 0  1 0  1 0  498.21 
0.1 11 72  07  132 0  1 0  1 0  1103.91 
0.2 11 70  09  131 0  1 

0  1 0  1739.15 
0.3 11 70  09  131 0  1 

0  0  1 2380.21 
0.4 12  73 09  128 0  1 0  1 0  3022.78 
0.5 12  73 09  128 0  1 0  0  0  3666.05 
0.6 12  73 09  128 0  1 0  1 0  4309.74 
0.7 12  73 09  128 0  1 0  0  0  4953.68 
0.8 12  73 09  128 0  1 0  0  1 5597.77 
0.9 12  73 09  128 0  1 0  1 0  6241.96 
1.0 12  73 09  128 0  1 0  1 0  6886.22 

Table 3. Total cost of the survey for different values of 1k and 2k  

1k  2k  
 

1n  2n  3n  4n  1
1z  1

2z  2
2z  

1
3z

 
2
3z  Cost (n)C  

0.0 1.0  20 76  18  120 0  1 0  0  1 795.45 
0.1 0.9  16 73 10  125 0  1 0  0  0  1380.86 
0.2 0.8  14  73 10  126 0  1 0  1 0  1954.87 
0.3 0.7  14  71 09 128 0  1 

0  1 0  2526.32 
0.4 0.6  12  73 09 128 0  1 0  1 0  3096.40 
0.5 0.5  12  73 09 128 0  1 0  1 0  3666.05 
0.6 0.4  11 70  09 131 0  1 0  0  0  4235.43 
0.7 0.3  11 70  09 131 0  1 0  1 0  4803.68 
0.8 0.2  11 70  09 131 0  1 0  0  0  5371.93 
0.9 0.1  11 70  09 131 0  1 0  0  1 5940.18 
1.0 0.0  11 70  09 131 0  1 0  0  0  6508.43 

 

If we consider the single objective (quadratic cost function as given in equation 
(2)) at the place of bi-objective cost then the objective will be to minimize the 
function  
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1 2( ) Var ( )C n k C k C= +   2 2 2
1 2

=1 =1 =1 =1

L L L L

h h h n h hc th h
h h h h

k c n t n k n nσ σ
    
 = + + +           

∑ ∑ ∑ ∑   

Subject to the constraints given in equation (11).   
After solving the allocation problem with this objective function, at different 
values of 1k and 2k , we get the results given in Table 3. 

DISCUSSION 

From the results presented in Table 2; it can be observed that the total cost is 
increasing with the increment inλ  and if we are giving equal weights (i.e. 0.5λ = ) 
to both the objectives (measurement cost and travel cost) then by applying the 
EVSD criteria the incurred cost is3666.05. In the similar manner if we consider 
the single objective (i.e. quadratic cost function) then for different values of 

1k and 2k the cost is inreasing as 1k increases and at 1 2 0.5k k= = ; the incurred 

cost is 3666.05. This result shows that if we are giving equal preference to the 
mean value of cost function and the standard deviation of the cost function then 
the cost is same as for bi-objective consideration for equal weights. One 
important thing to be noticed here is that in the bi-objective case we are giving 
weights to the objective functions and in the single objective case we are giving 
the weights to the mean value and the standard deviation of the cost function. 
Thus, these results indicate that if the costs are random then bi-objective cost 
function can be used in the place of quadratic cost function.  

On the other hand, regarding the precision of the estimate, we have the allocation 
scheme as: 

1 2 3 4

12, 73, 9, 128n n n n= = = =  

in both cases i.e., in single objective at 0.5λ =  and bi-objective at 1 2 0.5k k= = . 

The values of variances with this allocation scheme are 

1 0.015sty = , 2 0.018sty = , 3 0.014sty = . 

These variances ensure that the estimate of each characteristic takes exactly one 
value from the set of choices specified as the precision. 

6. CONCLUSION 

The problem of optimal allocation to minimize both the costs (measurement and 
travel) simultaneously is formulated as a bi-objective programming problem. The 
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unitary cost of measurement and travel are considered as random variables so 
both the objectives become stochastic and the problem of optimal allocation 
reduces to as a stochastic bi-objective programming problem. Firstly the bi-
objective problem is converted into a single objective problem and then EVSD 
criterion is applied to solve the problem. A numerical illustration is also given for 
the purpose of demonstration. A comparison of the obtained results is done with 
the results of single objective quadratic cost function and we conclude that the 
problem of optimum allocation to minimize the quadratic cost can be treated as a 
bi-objective programming problem. In future, this approach can be applied in the 
existing literature of quadratic cost function in order to derive the managerial 
insights.  
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