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ABSTRACT 

The accuracy of discrimination between the two populations namely healthy and 

diseased in a medical diagnosis can be assessed through the renowned statistical 

technique called Receiver Operating Characteristic ( )ROC  curve. The Area 

Under the ROC  Curve ( )AUC is the traditional index to measure the diagnostic 

accuracy. Several parametric distributions are assumed to plot a parametric ROC  

curve viz. Normal, Exponential, Gamma, Lognormal, Rayleigh, etc. But in all 

these cases, single distribution is assumed for both the populations. This paper 

deals with the problem of estimating ROC , AUC  and standard error of AUC  

based on healthy test scores follow Normal distribution and diseased test scores 

follow Exponential distribution, we call it as Normal-Exponential ROC  curve. 

The proposed model is explored using simulation as well as real life example. 

1. INTRODUCTION 

In a medical diagnosis, a biomarker which is strongly related to the disease is 

often assumed to be effective for screening and diagnosis of a particular disease. 

For assessing the accuracy of diagnosis, we have two measures namely the 

biomarker value often referred to as test score or risk score and the true status 

i.e. whether the individual belongs to healthy H  or diseased D  group 

determined by the “Gold Standard”, where the gold standard test refers to the 

best performing test available. For example, gold standard test for diagnosis of 

aortic dissection is Magnetic Resonance Angiogram ( )MRA . In a general 

condition, the test scores of higher values corresponds to diseased and the test 

scores of lower values corresponds to healthy. Hence, the mean of diseased 

scores will be higher than the mean of healthy scores. 

In a diagnostic process, a subject is regarded as “healthy/negative” or 

“diseased/positive” depending on the fact that the biomarker value is “less than” 

or “greater than or equal” to a gold standard cut-off point t . Let X  and Y  

represent the test scores from H and D  respectively determined from the gold 

standard. In order to assess the accuracy of selected biomarker in predicting the 
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status, a renowned statistical tool called Receiver Operating Characteristic 

( )ROC  curve has long been used. The cut-off point is varied within the range of 

test scores in order to get a ROC  plot. 

For a selected cut-off  t , if the test score is greater than or equal to t  given that 

the test scores from D  is regarded as True Positive ( )TP . The True Positive 

Proportion ( )TPP is defined as ( ).P Y t≥   TPP  is also called as sensitivity. If the 

test score is less than t given that the test scores is from H  is regarded as True 

Negative ( )TN . The True Negative Proportion ( )TNP  is defined as ( ).P X t<  

TNP is also called as Specificity. If the test score is greater than or equal to t 

given that the test scores is from H is regarded as False Positive ( )FP . The 

False Positive Proportion ( )FPP  is defined as ( ).P X t≥  If the test score is less 

than t given that the test score is from D  is regarded as False Negative ( )FN . 

The False Negative Proportion ( )FNP  is defined as ( ).P Y t<  For different 

values of t , we will get different values of these four probabilities. By plotting 

each pair of sensitivity and 1-specificity one can get the ROC  plot. 

Let the random variable Y  denotes the test results of diseased subject with 

Probability Density Function ( )PDF , ( )Yg y  and Cumulative Distribution 

Function ( )CDF , ( )YG y  Similarly, let the random variable X  denotes the test 

results of healthy subject with PDF , ( )Xf x  and CDF , ( )XF x . Assume that X  

and Y  are independent and continuous. Mathematically, Sensitivity of the 

diagnostic test is defined as  

-
( ) ( ) ,  0 y(t) 1

t

TPP y t g y dy
∞

= = ≤ ≤∫                 (1.1) 

Specificity of the diagnostic test is defined as  

-
1 ( ) ( ) ,  0 x(t) 1

∞
= − = ≤ ≤∫

t

TNP x t f x dx
                   

(1.2) 

Receiver Operating Characteristic ( )ROC  curve is a graphical plot of FPP  

against TPP  for different values of  t. The mathematical model representing the 

ROC curve can be written in the form of 

1[ ( )] 1 [ {1 ( )}];0 ( ) 1y x t G F x t x t−= − − ≤ ≤                    (1.3) 

where ( )x t  and ( )y t  are defined in equation (1.1) and (1.2). The area under the 

co-ordinates [ ] [ ] [ ]0,0 , 0,1 , 1,1  correspond to the ROC  space. The ROC  curve 

that falls near to [ ]0,1  has maximum accuracy 1. A completely randomized 

classification lies on the line joining [ ]0,0  and [ ]1,1 . The area under the ROC  

curve given in equation (1.3) is defined as the probability that the scores of a 

randomly chosen diseased individual have higher values than the scores of a 

randomly chosen healthy individual i.e.  
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1

0
( ) [ ( )] ( )AUC P Y X y x t dx t= > = ∫                          (1.4) 

In ROC  curve analysis, estimation of AUC  and its statistical inference is the 

primary interest. In general, the ROC  curve should satisfy the following 

properties. 

1. The test values of Y  are higher than X . 

2. ROC  curve is invariant with respect to monotone increasing transformation 

of the test scores (Krzanowski and Hand, 2009). 

3. [ ]( )y x t  is monotonically increasing function i.e. the first order derivative of 

[ ]( )y x t  with respect to ( )x t  should be positive i.e. '[ ( )] 0.y x t >   

4. [ ]( )y x t  is said to be concave, if  the second order derivative of ( )y x  with 

respect to ( )x t  is negative i.e. ''[ ( )] 0y x t < and convex, if ''[ ( )] 0.y x t >  

5. The slope of ROC curve at any operating point corresponding to a cut-off t  

is equal to the ratio of PDF  of diseased to that of PDF of healthy which is 

given by 

( )

( )

g t
Slope

f t
=                                   (1.5) 

6. Let ( , )KL f g denote the Kullback – Leibler ( )K L−  divergence between the 

distributions of healthy and diseased group with ( )f x  as the comparison 

distribution and ( )g y  as the reference distribution. Then 

( )
( , ) ( ) ln

( )D

f x
KL f g f x dz

g y

 
=  

 
∫

                      

(1.6) 

where ;  - x ; z x y∈ ∩ ∞ < < ∞ 0 y< < ∞ and D  is based on z , let us represent x  

and y  by z .    

Similarly, ( , )KL g f  denote the K L− divergence between the distribution of 

diseased and healthy population with ( )g y  as the comparison distribution and 

( )f x  as the reference distribution, then 

( )
( , ) ( ) ln

( )D

g y
KL g f g y dz

f x

 
=  

 
∫

 

                    (1.7) 

It is to be noted that ( , )KL f g  and ( , )KL g f  are positive and  

( , )KL f g  ( , ) 0KL g f= = , if and only if ( )f x =  ( ).g y  

These two measures tell us about the asymmetry of ROC  curve about the 

negative diagonal of the ROC  plot. If ( , ) ( , ),KL f g KL g f<  then the ROC  

curve is said to be TPP  asymmetric and if ( , )KL f g > ( , ),KL g f then the ROC  

curve is said to be TNP  asymmetric. 
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The one parameter Bi-Exponential ROC  model has been studied by Betinec 

(2008). Bi-Normal model is the most commonly used ROC  model for rating 

data. But it produces non-proper ROC  curve i.e. it crosses the chance line 

because of degeneracy in the data set. As a solution to this problem, Dorfman et 

al. (1996) proposed a proper ROC  analysis using Gamma distribution. 

Campbell and Ratnaparkhi (1993) have developed Bi-Lomax ROC  model by 

assuming Lomax distribution, Generalized Bi-Exponential ROC  model  had 

proposed by Hussain (2011), Bi-Lognormal ROC  model and its inference on 

AUC has been studied by Amala and Pundir (2012), Bi-Rayleigh ROC  model 

that make use of Rayleigh distribution had been worked by Pundir and Amala 

(2012(a), (b)) and Pundir and Amala (2014) have reviewed some of the 

parametric ROC  models in case of continuous data. Symmetric properties of 

ROC  curves in terms of Kullback-Leibler divergence has been studied by 

Hughes and Bhattachariya (2013). 

In all the above parametric ROC  models, same distribution is assumed for both 

the populations H  and D . In real life situations, it may happen that healthy 
scores follow one distribution and diseased scores may follow another 

distribution. In such a situation, we need to develop a model from two different 

distributions. In this paper, we propose Normal-Exponential ROC  model by 

assuming Normal distribution to X and exponential distribution to Y  to see the 

behavior of ROC  curve and study its properties. 

The paper is organized in the following way: In Section 2, Normal-Exponential 

ROC  model, its properties and Maximum Likelihood Estimation ( )MLE  of 

AUC  have been discussed. In Section 3, the asymptotic variance and confidence 

interval are derived for estimated AUC  of Normal-Exponential ROC  curve. In 

Section 4, the proposed model is applied to real life example and simulated data  

set. Section 5 discusses the concluding remarks. 

2. NORMAL-EXPONENTIAL ROC  MODEL 

Let us assume that X  is distributed as Normal with parameter µ  and 2σ  and Y  

is distributed as exponential with inverse scale parameter θ .  

The PDF of X  and Y  are given by 

2
1 1

( ) , , , 0.
22

X

x
f x Exp x

µ
µ σ

σσ π

 − − 
= −∞ < < ∞ >  

   
             (2.1) 

( ) [ ],  y, 0.Yf y Exp yθ θ θ= − >
   

                              (2.2) 

The 'CDF s  of X  and Y  are given by  

( )X

x
F x

µ

σ

− 
= Φ 

 
                                      (2.3) 
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( ) 1
y

YG y e
θ−= −                        (2.4) 

The Specificity of the biomarker at t is defined as 

1 ( ) ( )
t t

x t FNP f x dx
µ

σ−∞

− 
− = = = Φ  

 
∫                  (2.5) 

Similarly, the Sensitivity of the biomarker  at t is defined as 

( ) ( )
t

t
y t TPP g y dy e

θ
∞

−= = =∫                               (2.6) 

The theoretical ROC  model based on sensitivity (2.6) and specificity (2.5) is 

obtained as 

1( ( )) [ ( ( ))],  0 x(t) 1y x t Exp x tµθ θσ −= − + Φ ≤ ≤                 
(2.7) 

where (.)Φ is the CDF of normal distribution.  

1.1 Properties of Normal-Exponential ROC model 

 

1. Normal-Exponential ROC  curve is monotonically increasing function. 

 

Proof: A function is said to be a monotonically increasing function, if the first 

derivative is positive. Since, first derivative of Normal-Exponential ROC  curve 

with respect to ( )x t is positive i.e. 
2

1
1 [ ( )]

'[ ( )] 2 [ ( )]
2

x t
y x t Exp x tπθσ θµ θσ

−
−

  Φ 
= − + Φ +  

                                   (2.8) 

Equation (2.8) is positive since exponential function is always positive. Hence, 

Normal-Exponential ROC  curve is monotonically increasing function. 
 

2. Normal-Exponential ROC  curve is concave and partially proper. 

Proof: From equation (2.8), the second derivative of [ ]( )y x t  is obtained as 

( ) ( ){ }2
1 1 1"[ ( )] [ ( )] 2 [ ( )] [ ( )]y x t x t Exp x t x tθσ πθσ θµ θσ− − −= + Φ − + Φ + Φ  

 0   for   0 x(t) 0.5  
[ ( )]

 0   for   0.5 x(t) 1
y x t

< ≤ ≤
′′ = 

> < ≤

                  (2.9)  

Hence, Normal-Exponential ROC  curve is partially concave and partially 

convex in nature. Now, let us prove that it is partially proper. 

ROC  curve is said to be proper ROC  curve if it never crosses the chance line or 

the decision variable is a strictly increasing function of the likelihood ratio 

(Dorfman et al., 1996). Consider any two points ‘ a ’ and ‘b ’ (say, b a> ) where 
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0 , 0.5a b< <  on Normal-Exponential ROC  curve. Since we have proved that 

the Normal-Exponential ROC  curve is concave partially, the line segment 

connecting the point a  and b  never lies above the curve. So the property of 

proper ROC  curve retains as long as the ROC  curve is concave. The ROC  

curve may or may not cross the chance line near the convex region of the curve. 

Hence, we have proved that the Normal-Exponential ROC  curve is partially 

proper. 

3. The slope of the Normal-Exponential ROC  curve at the threshold t is given 

by 
2

1
2

2

t
Slope Exp t

µ
θσ π θ

σ

 −  
= −  

   

                (2.10)          

4. It is invariant with respect to monotone increasing transformation of the test 

scores.  
 

5. Normal-Exponential ROC  curve is TPP  asymmetric. 

Proof: The K L−  divergence between the distribution of diseased and healthy 

group with ( )f x  as the comparison distribution and ( )g y as the reference 

distribution has been given as  

( ){ }

2

22
2 1

( , ) (2 1 ln 2 [ ]
2 22

e
KL f g

µ

σµ µ
θµ π σθ θσ

σ σπ

−

   
= − − Φ + +   

   
   

(2.11)

  

 
Similarly, the K L−  divergence between the distribution of healthy and 

diseased group with ( )g x as the comparison distribution and ( )f x as the 

reference distribution has been given as 

2 2

2 2

2 2
( , ) ln( 2 ) 1

2

θ µ θµ
θσ π

θ σ

+ −
= − +KL g f        (2.12) 

It was found that ( , ) ( , ).KL f g KL g f<  These two divergence measures would 

be zero, if the healthy and diseased group is identical. Hence, we have proved 

that, the Normal-Exponential ROC  curve is TPP asymmetric.  

1.2 Estimation of AUC  
 

The area under the Normal-Exponential ROC  curve is obtained as 

2 2

( )
2

AUC P Y X Exp
σ θ

µθ
 

= > = − + 
 

             (2.13) 

where µ , σ 2
 and θ  are the parameters of healthy and diseased group 

respectively.  

To estimate the AUC , we need the MLE  of µ , σ 2
 and θ  and it is discussed in 

the following section. 
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2.3    Maximum Likelihood Estimator of AUC  

Let  
1 2, ,..., mX X X  be a random sample of size m from 2

( , )N µ σ  and 
1 2, ,..., nY Y Y  

be a random sample of size n  from ( )Exp θ , then the log likelihood function of 

the joint density can be written as  

2

2
1 1

1
ln ln ln( 2 ) ( ) ln

2

m n

i j

i j

L m m x n yσ π µ θ θ
σ = =

= − − − − + −∑ ∑
       

(2.14) 

Differentiating equation (2.14) with respect to µ  and σ 2
  we get 

1

2

( )
ln

m

i

i

x
L

µ

µ σ
=

−
∂

=
∂

∑
                            (2.15) 

1

2 2 4

( )
ln

2 2

m

i

i

x
L m

µ

σ σ σ
=

−
∂ −

= +
∂

∑
                            (2.16) 

1

ln n

j

j

L n
y

θ θ =

∂
= −

∂
∑

                           

(2.17) 

By equating equations (2.15), (2.16) and (2.17) to zero, we will get the ML  

estimates of parameters given by  

1

2

2 1

n

j

j 1

ˆ ,  

ˆ( )

ˆ  

and 

n 1ˆ

y

m

i

i

m

i

i

x

x
m

x

m

y

µ

µ

σ

θ

=

=

=



= =



− 
= 



= =




∑

∑

∑

              

  

(2.18) 

By substituting the estimates in equation (2.13), we will get the ML  estimator of 

AUC , i.e. 

2

1

2

( )
ˆ

2

m

i

i

x x
x

AUC Exp
y my

=

 
−  

= − + 
 
  

∑
                         (2.19) 
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3. ASYMPTOTIC VARIANCE OF ˆAUC  FROM NORMAL-

EXPONENTIAL ROC  CURVE AND CONFIDENCE INTERVAL OF 

ˆAUC  

In this section, we will derive the asymptotic variance of ˆAUC  and confidence 

interval of ˆAUC   and it is given in the form of a theorem. 

Theorem 3.1: The area under the Normal-Exponential ROC  curve will 

converge in distribution to a Normal random variable with mean zero and 

variance (τ )   

2 2
2 2 4 2 2 2

2

2 2
2

2 3

( )
 

1
4

4

θ σ µθ θ σ θ θσ µ θ

µ σ
µ

σ σ

−

 
 

− + +  + − −  
  

e
m n

m

  

   for large N( m n)= +  

Proof: Let ( , , / , )L x yµ σ θ  be the likelihood function of the sample 

observations from X  and Y  which is given in equation (2.14). We know that 

the consistent solution of the likelihood equation is asymptotically normally 

distributed about the true value  
0θ  where 2

0 ( , , )θ µ σ θ= ,  i.e.  

 ))(I,(N~ˆ
0

1
0 θθθ −

                  (3.1) 

 ))(I,0(N)ˆ(N 0
1

00 θ→θ−θ⇒ −
                  (3.2) 

where ( )I θ  is the Fisher Information matrix which is given by 

2 2 2

2 2

2 2 2

2 2 2 2

2 2 2

2 2

ln ln ln

ln ln ln
( )

( )

ln ln ln

L L L
E E E

L L L
I E E E

L L L
E E E

µ µ σ µ θ

θ
σ µ σ σ θ

θ µ θ σ θ

      ∂ ∂ ∂
      

∂ ∂ ∂ ∂ ∂      
      ∂ ∂ ∂ = −      

∂ ∂ ∂ ∂ ∂      
 

     ∂ ∂ ∂ 
      ∂ ∂ ∂ ∂ ∂      

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 =  
  

    (3.3)

 

 

where 

 
2 2

2

11 222 2 3

1
,  ,  

4

m
a a m

µ σ
µ

σ σ σ

 +
= = − − 

 
 

33 12 21 13 31 23 322
a ,  a 0

n
a a a a a

θ
= = = = = = =  
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The 1( )I θ−  is calculated as 

 

2

1 2 2 2

2

ˆˆ ˆ ˆ ˆ( ) ( , ) ( , )

ˆˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , )

ˆ ˆ ˆˆ ˆ( , ) ( , ) ( )

V Cov Cov

I Cov V Cov

Cov Cov V

µ µ σ µ θ

θ σ µ σ σ θ

θ µ θ σ θ

−

 
 

=  
 
  

 

 

           

2

2 2
2

2 3

2

0 0

1
0 0

1

4

0 0

m

m

n

σ

µ σ
µ

σ σ

θ

 
 
 
 
 
 =
  +
 − − 
  
 
 
                 

(3.4)    

Since area under the ROC  curve is a function of parametersµ, 2σ  and θ . We 

will adopt the Delta method (Powell, 2007) for finding the approximate variance 

which is given as follows: 

22 2

2

2
ˆˆ ˆ ˆ( ) ( ) ( ) ( )θ µ σ

θ µ σ

 ∂ ∂ ∂   
= + +    

∂ ∂ ∂    

AUC AUC AUC
V AUC V V V   

 

2

2
ˆ ˆˆ ˆ2 ( , )  2 ( , )µ θ θ σ

µ θ θ σ

 ∂ ∂ ∂ ∂    
+ +     

∂ ∂ ∂ ∂     

AUC AUC AUC AUC
Cov Cov  

 

2

2
ˆ ˆ2 ( , )

AUC AUC
Cov µ σ

σ µ

 ∂ ∂ 
+   

∂ ∂  
            (3.5)   

2 2
2 2 4 2 2 2

2

2 2
2

2 3

( )
 

1
4

4

e
m n

m

θ σ µθ θ σ θ θσ µ θ

µ σ
µ

σ σ

−

 
 

− 
+ + 

 + − −  
  

  

 

for large N( m n)= +  

The estimate of variance is obtained by substituting the estimates of the 

parameters µ , σ 2
 and θ . 

Hence, the estimate of AUC  follows that  
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ˆ( )
(0,  1).

ˆ( )

−
→

N AUC AUC
N

V AUC                                  (3.6)
 

Hence, it is proved that 

[ ]ˆ ~ 0,  AUC N τ . 

The standard error of ˆAUC  can be obtained by taking square root of  ˆ( )V AUC  

in equation (3.5). The 100(1 )α− % confidence interval is obtained by  

/ 2
ˆ ˆ( ) α

 ± AUC Se AUC Z                                (3.7) 

where α is the level of significance and / 2Zα  is the critical value.  

One can also find the ROC  model by assuming that X  is distributed as 

Exponential with parameter  θ  and Y  is distributed as Normal with parameters 

µ  and σ 2.  

ROC  model is obtained as 

ln[ ( )]
[ ( )] ,0 ( ) 1

x t
y x t x t

µ

σ θσ

 
= Φ + ≤ ≤ 

 
                  (3.8) 

where (.)Φ  is the CDF  of normal distribution.  

The explicit function of AUC  of the model is given in equation (3.8) is not 

possible. But one can evaluate the AUC  by substituting the estimated values of 

parameters. 

4. NUMERICAL EXAMPLE 

In this section, we provide the results of asymptotic variance of ˆAUC  and 

confidence interval using simulated and real life datasets.  

4.1 Simulation Studies 

(i) Asymptotic Variance Method 

In this section, we did simulation studies to observe how the asymptotic 

variance of AUC  behaves using simulated data sets. Let us generate four 

samples of size 30m = for healthy from a normal population i.e. 2~ ( , )X N µ σ  

with µ taking the values (15, 20, 15, 10) with σ = (6, 8.5, 7, 6).  
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Similarly, let us generate four samples of size 30n = from an exponential 

population i.e. ~ ( )Y Exp θ
 
with θ  taking the values (0.0254, 0.01311, 0.0094, 

0.0054).  

The estimated parameters, ˆ ,AUC ˆ( ),V AUC ˆand Se(AUC) and 95% Confidence 

Interval for ˆAUC are shown in Table 1 which is given below. 

 

Table 1: CÛA , )CÛA(Se  and 95% confidence interval for CÛA  based on 

Normal-Exponential ROC through asymptotic variance method 

S.No µ̂  σ̂  θ̂  
ˆAUC

 

ˆ( )V AUC

 

ˆ( )Se AUC

 

95% 

Confidence 

Interval 

1 14.2443 5.535 0.0284 0.676 0.00257 0.05070 [0.5762, 

0.7750] 

2 20.7288 7.6385 0.0117 .7877 0.00130 0.03612 [0.7169, 

0.8585] 

3 13.3369 6.728 0.01128 .8628 0.00066 0.02574 [0.8124, 

0.9134] 

4 9.3820 5.5799 0.0056 .9489 0.00011 0.01045 [0.9288, 

0.9698] 

 
 

Table 2: CÛA , ),CÛA(Se  95% confidence interval for CÛA and coverage 

area of confidence band (W)  

Sample 

Size  

(m, n) 

 

10,10 20, 20 30,30 40,40 50,50 80,80 100,100 

~

( 15, 6) 

X N

µ σ= =

 

Y~Exp

( 0.0254)θ =

 

AUC 

Var 

Se 

LCI 

UCI 

W 

0.6756 

0.0077 

0.0878 

0.5035 

0.8477 

0.3443 

0.6756 

0.0044 

0.0665 

0.5453 

0.8059 

0.2606 

0.6756 

0.0026 

0.0507 

0.5762 

0.7750 

0.1988 

0.6756 

0.00193 

0.0439 

0.58952 

0.7616 

0.17213 

0.6756 

0.00154 

0.03927 

0.5986 

0.7616 

0.16304 

0.6756 

0.0096 

0.0311 

0.6147 

0.7364 

0.1217 

0.6756 

0.0008 

0.0278 

0.6212 

0.7300 

0.1089 

~

( 20, 8.5) 

X N

µ σ= =

 

Y~Exp

( 0.01312)θ =

 

AUC 

Var 

Se 

LCI 

UCI 

W 

0.7877 

0.0039 

0.0626 

0.6651 

0.9103 

0.7877 

0.0022 

0.0470 

0.6956 

0.8797 

0.7877 

0.0013 

0.0361 

0.7169 

0.8585 

0.7877 

0.00978 

0.03128 

0.72637 

0.84898 

0.7877 

0.00078 

0.02797 

0.73284 

0.84897 

0.7877 

0.0005 

0.0222 

0.7443 

0.8310 

0.7877 

0.00039 

0.01978 

0.7489 

0.8264 
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0.2452 0.1841 0.1416 0.12261 0.11613 0.0867 0.0775 

~

( 15, 7) 

X N

µ σ= =

 

Y~Exp

( 0.0094)θ =

 

AUC 

Var 

Se 

LCI 

UCI 

W 

.8628 

.0020 

.0446 

.7754 

.9502 

.1747 

.8628 

.0012 

.0348 

.7947 

.9309 

.1362 

.8628 

.0007 

.0257 

.8124 

.9133 

.1009 

0.8628 

0.0005 

0.0229 

0.8191 

0.9065 

0.0874 

0.8628 

0.0004 

0.0199 

0.8237 

0.9065 

0.0828 

0.8628 

0.0003 

0.0158 

0.8320 

0.8937 

0.0618 

0.8628 

0.0002 

0.0141 

0.8352 

0.8904 

0.0553 

~

( 10, 6) 

X N

µ σ= =

 

Y~Exp

( 0.054)θ =

 

AUC 

Var 

Se 

LCI 

UCI 

W 

0.9489 

0.0003 

0.0181 

0.9138 

0.9848 

0.071 

0.9489 

0.0002 

0.0144 

0.9210 

0.9775 

0.0565 

0.9489 

0.0001 

0.0105 

0.9288 

0.9698 

0.0410 

0.9489 

0.00008 

0.00905 

0.93154 

0.9670 

0.0355 

0.9489 

0.00007 

0.00809 

0.9334 

0.9670 

0.0336 

0.9489 

0.00004 

0.0064 

0.9367 

0.9618 

0.0251 

0.9489 

0.00003 

0.0057 

0.9381 

0.9605 

0.0224 

 

From Table 1, we observe that, variance and Se of CÛA  decreases as the 

accuracy increase. In Table 2, the behavior of asymptotic variance is studied by 

varying the sample size viz. (10, 20, 30, 40, 50, 60, 80, and 100) for different 

values of parameters. From Table 2, it is observed that ˆ( )Se AUC decreases with 

increase in sample size and accuracy. The behavior is depicted in Figure 1. 

 

Fig. 1  Standard error versus sample size 
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In figure 2, the property 2 from Section 2.1 is well explained. The non-proper 

ROC  curves have occurred for µ̂ =(14.2443, 20.7288), ˆ  σ = (5.535, 7.6385) 

and θ̂ =(0.0284, 0.0117) 
 
within the region of 0.5 ≤ x (t) ≤ 1. The ROC  curve is 

proper as long as the concavity property holds using property 2.  

Fig. 2 ROC  curve for Normal-Exponential with different parametric values 

 

4.2 Real Life Example 

A study on the relative accuracy of biomarkers viz. 19 9CA − and 125CA for 

pancreatic cancer has been reported in Wieand et al. (1989). Serum 

concentrations of 125CA  (cancer antigen) and 19 9CA −  (a carbohydrate 

antigen) have been collected from 51 control patients with pancreatitis and 90 

patients with pancreatic cancer.  

The data has been given in Zhou, Obuchowski, and McClish (2002). 125CA is 

not fitting both of the distribution. So, we have applied the Normal-Exponential 

ROC  model on the Bio-marker 19 9CA −  to observe the accuracy provided the 

model and its behavior.  

The original data set is not fitting either Normal or Exponential distribution. In 

order to fit the specific distribution, logarithmic transformation is done for 

healthy scores and square root transformation is adopted for diseased scores. 

We have fitted normal distribution to healthy and exponential distribution to 

diseased test scores and presented the statistic, P − value and ranks for goodness 

of fit tests like Kolmogorov-Smirnov, χ
2
 and Anderson- Darling tests. The 

results are as follows. 
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Table 3: Results of Goodness of Fit test 

 Test Statistic P-value Rank α % 

Healthy 

Kolmogorov-

Smirnov 
0.11987 0.42311 44 20, 10, 5, 2, 1 

χ
2
 5.6643 0.34026 41 20, 10, 5, 2, 1 

Anderson- Darling 0.82119 - 37 20, 10, 5, 2, 1 

Diseased 

Kolmogorov-

Smirnov 
0.10259 0.28017 28 20, 10, 5, 2, 1 

χ
2
 6.9887 0.32189 27 20, 10, 5, 2, 1 

Anderson- Darling 1.2918 - 22 20, 10, 5, 2, 1 

 

By using equation (2.18), the estimated parameters are µ̂ = 2.4723, ˆ  =σ 0.8648 

and θ̂ = 0.03621.The AUC  and standard error are estimated as 0.9148 and 

0.0094 respectively. The 95% asymptotic confidence interval for AUC  

becomes [0.8963, 0.9148]. The test’s sensitivity and specificity are found to be 

88% and 88% respectively. The ROC  curve plotted for the given data set is 

shown in Figure 3.  

Fig. 3 Normal-Exponential ROC  curve for using CA1  19-9 data 

 

Now, let us discuss the asymmetry property of Normal-Exponential ROC  curve 

plotted in Figure 3. The line  segment connecting (0,1) and (1,0) is called the 

negative diagonal and it is obtained by plotting FPP on X − axis and 1- FPP  

on Y − axis.  
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The dashed vertical line segment S1 (say) corresponds to the co-ordinate 

[ FPP a=  (0.09, say), 0 1TPP≤ ≤ ]. The dashed horizontal line segment  

2S (say) corresponds to the co-ordinate  
 

[ 0 1FPP≤ ≤ , 1TPP a= −  (0.95)].  
 

Let [ ],0.5A a= , [ ]0.5,1B a= − and * *,1C a a a = > −  .  

  

A ROC  curve is said to be symmetric if it passes through the co-ordinate 

,A B and C . Any ROC  curve is said be TPP  asymmetric if it passess through 

2S  after the co-ordinate B and the one that passes though S2 before the co-

ordinate B is called TNP  asymmetric. From Figure 3, it is an evident that 

Normal-Exponential ROC  curve is TPP  asymmetric. 

When the data is applied to Bi-Normal ROC  model (Krzanowski and Hand, 

2009) and the accuracy and standard error are found to be 0.8793 and 0.08322 

respectively. The 95% asymptotic confidence interval for AUC  becomes 

[0.716, 1.000]. 

The sensitivity and specificity are found to be 82% and 82% respectively. By 

comparing the accuracy of the proposed Normal-Exponential and Bi-Normal 

model, the proposed model proves to be the best. 

5.  Conclusion 

In some situations, it may happen that healthy population will follow normal 
distribution and diseased population will follow exponential distribution. In that 

case, Normal-Exponential ROC  model should be used. Some of the properties 

of the model have been discussed. It was found that Normal-Exponential ROC  

curve is monotonically increasing, TPP  asymmetric, invariance under 

monotone transformation and partially proper. AUC  of Normal-Exponential 

ROC  curve has been estimated. Asymptotic variance and confidence interval of 

estimated AUC  have been computed. It is observed that Se( AUC ) decreases 

with increase in sample size and accuracy. In the real life example 19 9CA − , it 

is observed that, the proposed Normal-Exponential ROC  model is giving better 

accuracy than the conventional Bi-Normal ROC  model. 
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