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LOGARITHMIC SERIES DISTRIBUTION OF ORDER k 

 

C. Satheesh Kumar and A. Riyaz 

 

Through the present paper we develop an order k  version of the logarithmic 

series distribution and derive its probability mass function, mean and variance. 

We estimate the parameters of this distribution by the method of maximum 

likelihood and the distribution has been fitted to certain real life data sets. Also, 

we discuss the generalized likelihood ratio test and Rao’s score test for testing the 

significance of the additional parameters of the distribution. 

 

1. INTRODUCTION 

The standard logarithmic series distribution (in short, the LSD ) of Fisher et. al. 

(1943) has been found applications in several areas of research such as biology, 

ecology, economics, operations research and marine sciences. Fisher et. al. 

(1943) obtained the LSD  as the limit of a zero-truncated negative binomial 

distribution for investigating the distribution of butterflies in the Malayan 

Peninsula. Chatfield et. al. (1966) used the LSD  to represent the distribution of 

number of items of a product purchased by a buyer in a specified time period. 

For a detailed account of the LSD  see chapter 7 of Johnson et. al. (2005). 

Various generalized versions of the LSD  have been proposed in the literature. 

For example see Tripathi and Gupta (1985, 1988), Ong (2000) and Khang and 

Ong (2007).  

Through this paper we consider a generalized form of the LSD  which we 

termed as “the logarithmic series distribution of order k  ( )kLSD ”. In section 2 

we obtain the 
kLSD  as the limiting form of the zero-truncated cluster negative 

binomial distribution and derive its probability mass function ( )pmf , mean 

and variance. In section 3, we discuss the estimation of the parameters of the 

kLSD  by the method of maximum likelihood and illustrate its usefulness 

through fitting the model to certain real life data sets. In section 4 we consider 

the generalized likelihood ratio test and Rao’s efficient score test for testing the 

significance of the additional parameters of the distribution. 
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2. THE LOGARITHMIC SERIES DISTRIBUTION OF ORDER k AND 

ITS PROPERTIES 

Xekalaki and Panaretos (1989) introduced the cluster negative binomial 

distribution through the following probability generating function ( )pgf . 
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On taking the limit as 0r → , we get the following from (2.2). 
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Clearly, when 1k =  the pgf given in (2.3) reduces to that of the LSD  of Fisher 

et. al. (1943). 

A distribution with pgf ( )H z
 
we call “the logarithmic series distribution of 

order k (or in short the 
kLSD )”. This pgf  of 

kLSD  given in (2.3) can also be 

written as 
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is the Gauss hypergeometric function. For details regarding Gauss 

hypergeometric function see Slater (1966) or Mathai and Haubold (2008). We 

obtain the pmf  of the 
kLSD  through the following result.  
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Theorem 2.1: For 1, 2,....x =  the pmf  ( )xp P X x= =  of the 
kLSD  with pgf  

(2.3) is the following 
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On expanding the logarithmic function in (2.7), we get 
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Now, by applying the multinomial expansion in (2.8) we have  
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in which 
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1 2( , ,..., )kx x x  of non-negative integers in the set
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On equating the coefficient of 
xz  on the right hand side expressions of (2.6) and 

(2.9) we get (2.5). 

Next we obtain the mean and variance of the 
kLSD  through the following result.  

Theorem 2.2: The mean and variance of the 
kLSD  are 
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3. ESTIMATION 

Here we discuss the estimation of the parameters of the 
kLSD  by the method of 

maximum likelihood and have illustrated the usefulness of the model with the 

help of certain real life data sets. Let ( )a x  be the observed frequency of x  

events and let y  be the highest value of x  observed. Then the likelihood 

function of the sample is 
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x

p  is the pmf  of the 
kLSD  as given in (2.5). Now taking logarithm on 

both sides of (3.1), we have 
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denote the maximum likelihood estimator of the parameter j

θ  of the 

kLSD , for 1,2,...,j k= . On differentiating (3.2) partially with respect to the 

parameter jθ , for 1, 2,...,j k=  
and equating to zero, we get the following 

system of likelihood equations. 
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(3.3) 

The likelihood equations do not always have a solution because the 
kLSD  is not 

a regular model. Therefore, when likelihood equations do not always have a 

solution, the maximum of the likelihood function attained at the border of the 

domain of parameters. We obtained the second order partial derivatives of 

log
x

p  with respect to parameter jθ  and using MATHCAD  softwares we 

observed that these equations give negative values for all 0jθ >  such that 
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1
k

j

j i

θ
=

<∑ . Thus the density of the 
kLSD  is log-concave and have maximum 

likelihood estimators of the parameter jθ   are unique (cf. Puig. 2003). Now on 

solving these likelihood equations by using mathematical softwares such as 

MATHLAB , MATHCAD , MATHEMATICA  etc., one can obtain the maximum 

likelihood estimators of the parameters of the 
kLSD . 

For numerical illustration, we have considered three real life data sets of which 

the first and second data sets are from family epidemics of common cold 

obtained by Heasman and Reid (1961) and the third data set is a zero-truncated 

data set on the counts of the number of European red mites on apple leaves, used 

earlier by Jani and Shah (1979). We have fitted both the LSD  and the kLSD  to 

these data sets and the results obtained along with the corresponding values of 

the expected frequencies, chi-square values, degrees of freedom ( . .)d f  and 

P − values for each of the models are presented in the Table 1, Table 2 and 

Table 3. Based on the chi-square values and P − values given in the tables, it can 

be observed that the 
kLSD  gives a better fit to the given data sets compared to 

the existing model. 

Table 1: Observed frequencies and computed values of the expected frequencies 

of the LSD  and the 
kLSD  by method of maximum likelihood for the 

first data set. 

Number 

of cases 

Observation      LSD                             
kLSD  

2k =  3k =  

1 156 179.080 159.478 156.332       

2 55 42.108 53.724 50.578 

3 19 13.310 17.182 19.36 

4 10 4.598   6.776 7.968 

5 2 2.904   4.840 7.774 

Total 242 242      242 242 

Estimates 

of the 

parameters 

 

 
1
ˆ 0.47θ =  

 

 
1
ˆ 0.40θ =  

055.0ˆ
1 =θ  

1
ˆ 0.41θ =  

035.0ˆ
2 =θ  

001.0ˆ
3 =θ  

Chi-square 

values 

   

    

12.051  0.311 5.173   

d.f.        2            1      1                    

P- values        0.04   0.568      0.023              
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Table 2: Observed frequencies and computed values of the expected frequencies 

of the LSD  and the 
kLSD  by method of maximum likelihood for the 

second data set. 

Number  

of cases 

Observ- 

ation 

LSD           
kLSD  

2k =                               3k =  
   1   112 129.415 110.591 116.202 

   2    35 32.942 39.639 38.372 

   3    17 11.222 16.109 14.661 

   4    11 4.344 7.24 6.335 

   5    6 3.077 7.421 5.43 

Total   181 181 181 181 

Estimates 

of the 

parameters 

 
1
ˆ 0.51θ =  

 
1
ˆ 0.53θ =  

2
ˆ 0.05θ =  

1
ˆ 0.50θ =  

2
ˆ 0.04θ =  

3
ˆ 0.001θ =  

Chi-square  

values 

 

 

17.812 2.835 4.317 

  d.f.  2  2    1 

P- values  00001.<  0.242 0.038 

 

Table 3: Observed frequencies and computed values of the expected 

frequencies of the LSD  and the 
kLSD  by the method of 

maximum likelihood for the third data set. 

 

No. of mites  

per  leaves 

Leaves 

observed 

LSD           kLSD  

2k =                               3k =  

1 

2 

3 

4 

5 

6 

7 

8 

38 

17 

10 

9 

3 

2 

1 

0 

52.939 

15.617 

6.143 

2.715 

1.283 

0.631 

0.315 

0.353 

40.40   

16.8 

8.56 

4.96 

3.12 

2.00 

0.504 

3.656 

  38.80 

16.48 

8.80 

5.20 

3.36 

2.08 

0.577 

4.703 

Total 80 80 80 80 

Estimates of  the  

parameters 

 59.0ˆ
1 =θ  

 

72.0ˆ
1 =θ  

04.0ˆ
2 =θ    

4.0ˆ
1 =θ  

04.0ˆ
2 =θ  

002.0ˆ
3 =θ  

Chi-square values  24.506 0.428 5.052 

d.f.  2 1 1 

P- values  00001.<  0.513 0.025 
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4. TESTING OF THE HYPOTHESIS 

In this section we discuss the testing of the hypothesis 

1 20 : ... 0
mi i iH θ θ θ= = = = ,  

for any particular subset 1 2{ , ,..., }
m

i i i  of the set{1,2, , }kL , by using generalized 

likelihood ratio test and Rao’s efficient score test. 
In case of generalized likelihood ratio test, the test statistic is 

1 22log 2( )l lλ− = − ,                (4.1) 

where  

1
ˆlog ( ; )l L xθ= ,  

in which θ̂  is the maximum likelihood estimator of 
1 2( , ,..., )kθ θ θ θ=  with no 

restrictions  

and  
*

2
ˆlog ( ; )l L xθ= ,  

in which 
*

θ̂ is the maximum likelihood estimate of θ  under 0H . The log 

likelihood function ( , )L L xθ=  is as defined in (3.2), and the test statistic 

2logλ−  given in (4.1) is asymptotically distributed as  2χ  with m degree of 

freedom (for details see Rao, 1973).  

Next we consider the testing of significance of the parameter 2θ in case of the 

fitting of the 
kLSD  to the data sets considered in section 3. Here 

0 2: 0H θ = against 1 2: 0H θ > . We have computed the values of 

*ˆ ˆlog ( ; ), log ( ; )L x L xθ θ and the test statistic given in (4.1) in case of all the three 

data sets and presented in Table 4. 

Table 4: The computed the values of 
*ˆ ˆlog ( ; ), log ( ; )L x L xθ θ and the 

generalized likelihood ratio test statistic. 

 

 *ˆlog ( ; )L xθ

 

ˆlog ( ; )L xθ

  

Test statistic     

Data set 1     -107.694 -105.435  4.518 

Data set 2     -92.712 -90.534  4.356 

Data set 3    -55.156 -53.037  4.238 

 

Since the critical value for the test with 0.05α = and degrees of freedom one is 

3.84, the null hypothesis is rejected in all the cases. Hence we conclude that the 

additional parameter 2θ in the model is significant in all the three data sets 

considered in the paper. 

In case of Rao’s score test, the statistic is 
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1
M V Vφ −′= ,                   (4.2) 

where φ  is the Fisher information matrix under 0H  and   

1 2

1 log 1 log 1 log
, , ... ,

k

L L L
V

n n nθ θ θ

 ∂ ∂ ∂
′ =  

∂ ∂ ∂ 
 

under 0H , in which L  is the likelihood function as defined in (3.1). The test 

statistic given in (4.2) follows chi-square distribution with m degrees of freedom 

(for details see Rao, 1973). 

Next we consider the testing of significance of the parameter 2θ  in case of the 

fitting of the 
kLSD  to all the three data sets, as considered above. Let 

0 2: 0H θ = against 1 2: 0H θ > .  We have computed the values of M  for (i) the 

kLSD  with 2k =  in case of first data set as 1M  (ii) the 
kLSD  with 2k =  in 

case of second data set as 2M and (iii) the 
kLSD  with 2k =  in case of third data 

set as 3
M  as given below. 

( )1

0.045 0.05 0.247
0.247 25.771

0.05 0.0097 25.771
M

− −   
= −   −   

 

= 6.674 

( )2

0.422 0.236 0.584
0.584 14.205

0.236 0.135 14.205
M

− −   
= −   −   

 

= 31.374 

( )3

0.14 0.072 4.028
4.028 9.359

0.072 0.044 9.359
M

− −   
= −   −   

 

= 11.543 

Since the critical value for the test with 05.0=α and degrees of freedom one is 

3.84, the null hypothesis is rejected in all the three cases.  
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