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GENERALIZED ORDER STATISTICS FROM MARSHALL-OLKIN
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ABSTRACT

In this paper the moment recurrence relations for function of single and two dual
generalized order statistics (dgos) from Marshall-Olkin extended general class of

distribution have been derived. Further, particular cases and examples are also
discussed. At the end a characterization theorem is given.

1. INTRODUCTION

The concept of dual (lower) generalized order statistics is first given by Pawlas
and Szynal (2001) which is further extensively studied and discussed by
Burkschat et al. (2003) as below:

The random variables X'(1,n,m.k), X (2,n,m,k),...,. X (n,n,m,k), k=1, me R
are n dual generalized order statistics (dgos) from an absolutely continuous
distribution function F() with the density function f(), if their joint density

function is of the form

’{H %-](ﬁ[F(x,-)]'” f (x,.)][F(xn)]"" f(x,). (1.1)

for F’1(1)>x1 22X, 2.2, > F7(0),

where ¥, =k+(n—j)(m+1)>0 forall j, 1<j<n, k is a positive integer and
m=-1.

In view of (1.1), the probability density function of X'(r,n,m,k) is

Crfl
(r—1)!

Fxvmmiy (0= [FO)I"™ f(x) g7 (F(x)). (1.2)

The joint probability density function of X'(r,n,m,k) and X'(s,n,m,k) is
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Cor R fg (F()

fX’(r,n,m,k),X’m,n,m,k) (x’ y) - m

X[, (F () =k, (FC)™ TFODI £ (),

a<y<x<}B, (1.3)
where
Crfl = 7/1 ’
i=1
_ 1 m+l’ m+ _1
h,(x)=49 m+1 ,
—log x , m=—1
and

g, (x)=h (x)—h, (1), xe[0,1).

If m=0, k=1, then X'(r,n,m,k) reduces to the (n—r+1)—th order statistic
X

then X '(r,n,m, k) reduces to the r™ lower k —record value.

from the sample X ,X,,.,X, and when m=-1 and k=1

n—r+ln n

Recurrence relations for moments of dual generalized order statistics (dgos) for
some specific distributions as well as for general class of distributions are
investigated by several authors in the literature. Pawlas and Szynal (2001)
derived the recurrence relations for single and product moments of dual
generalized order statistics from the inverse Weibull distribution whereas Khan
et al. (2008) obtained the recurrence relations for exponentiated Weibull
distribution. Further, Khan and Kumar (2010, 2011a, b) established recurrence
relations for moments of dual generalized order statistics from Pareto,
generalized exponential and exponentiated gamma distributions and they also
characterized these distributions using moment properties of dgos .

Characterizations of probability distributions have been carried out by several
authors using dgos . Khan et al. (2009) characterized a generalized family of
distributions through conditional expectation of dgos, when conditioning is
non-adjacent.  Further, Khan et al. (2010a) established characterizing
relationships and used it to characterize a general form of distributions whereas
Khan et al. (2010b) characterized general families of distributions through
conditional variance.

Athar and Faizan (2011) obtained explicit expression for the r—¢h moment of
dgos for power function distribution and characterized the same through

conditional moments of dual generalized order statistics.
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In this paper we present a unified approach to obtain certain types of recurrence
relations for single and product moments of dual generalized order statistics
from Marshall-Olkin extended general class of distribution. These relations are
applicable to all specific distributions belong to Marshall-Olkin extended
distributions. Further, results for order statistics and lower record values are
discussed as special cases.

Adding parameters to a well-established family of distributions is a time
honoured device for obtaining more flexible new families of distributions.
Marshall and Olkin (1997) introduced a new method of adding a parameter into
a family of distributions. Marshall-Olkin extended distributions offer a wide
range of behaviour than the basic distributions from which they are derived.
Using this concept, here we have introduced Marshall-Olkin general form of
distribution, which is as below:

A continuous random variable X is said to have Marshall-Olkin extended
general form of distribution, if its distribution function (df) is of the form

Fx)= Alah(x) +b]°

= ,d<x<fB,A>0,A=1-24, 14
{1—Alah(x)+b]} asxsp.A> 14

where a,b and c¢ are such that F(a)=0, F(f)=1and h(x)is a monotonic and
differentiable function of x in the interval (e, f3).

Also we have,

{[ah(x) +b]— A[ah(x) +b]""}
ach’(x)

F(x)= f(x). (1.5)

The relation (1.5) will be utilized to establish recurrence relations for moments
of dgos .

2. RECURRENCE RELATIONS FOR SINGLE MOMENTS

We shall assume throughout &(x) a measurable function of x and is
differentiable.

Theorem 2.1: For the Marshall-Olkin extended general class of distribution as
given in (1.4) and neN, meR, k>0, 1<r<n, A1>0, and

V. =k+(m—-r)(m+1)>0,

E[S{X (r,n,m,k)}] = E[é"{X’(r—Ln,m,k)}]—jE[V/{X’(hn,m,k)}]

A

cay,

r

+

E[@o{X (r,n,m,k)}], 2.1
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where
p(x) =[ah(x) + blo(x), P(x)=[ah(x)+b]" @(x), (x)= 58 :
Proof: From Athar ef al. (2008), we have
ELE(X (r,n,m k)] = ELE(X (r =1, m, k)]
=- j EWIF T g (F(x)dx. (2.2)

1)'
Now in view of (1.5) and (2.2), we get

E[f{X’(rsnsmsk)}]_E[g{X,(r_lsnsmsk)}]

C., &
ac(r 1)' W (x)

[FY ™ g, (FOe){[ah(x) +b] = Alah(x) + ]} f (x)dx,

which after simplification yields (2.1).

Remark 2.1: Recurrence relation for moments of function of order statistics
(at m=0, k=1) is

E§(X, )] =EEX, , n)-——{EWy(X,_..,)]
ca(n—r+1)

-AE[p(X,_, )1} (2.3)

Remark 2.2: Recurrence relation for moments of function single k —th lower
record statistics (at m=—1) will be

E[£{X (r,n,=1,k)}] =E[cf{X(r—l,n,—l,k)}]—ﬁ{E[l//{X(r,n,—l,k)}]
—AE[@{X (r,n,—1,k)}1}.
Remark 2.3: At A=1 in (2.1), we get

E[S{X (r,n,m,k)}] = E[f{X’(r—Ln,m,k)}]—jE[V/{X'(r,n,m,k)}]

r

as obtained by Athar et al. (2008).
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Remark: 2.4: At A=1 in (2.3), we get

1
E[g(Xn—H—l:n )] = E[g(Xn—r+2:n )] PN E[l//(Xn—Hl:n )]
ca(n—r+1)

as obtained by Ali and Khan (1997).
Examples

1. Marshall-Olkin Extended Generalized Exponential Distribution

From (1.4) and for a=-1, b=1, ¢=f and h(x)=e¢*, the distribution
function is given by,

_ ax\p
Fo - A=)

=, 0 o, y 0.
0 Zd—c V] <x< a,p>

Let &(x)=x’,then

() =2~ )
a

and

o(x) =—Lv(x),
a
where
7(x)=x""e" and v(x)=x""e"(1-e )",

Thus from relation (2.1), we have

ELX” (ranom )] = ELX (=L, o)) =2 E[V(X (r.nm. )]
apy,

r

+L{ E[X"7 (r,n,m, k)] - EIn{X (r,n,m,)}1} . (2.4)
opy,

Set A=1, in (2.4) to get

E[X" (r,n,m,k)]— E[ X" (r —=1,n,m,k)]

j 7j—1 ’
=——{ ELX"" (r,n,m, k)] = E[7{X "(r,n,m, k)}]
aﬁ%{ § }

as obtained by Khan and Kumar (2011a).
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2. Marshall-Olkin Extended Exponentiated Pareto Distribution

From (1.4) and for a=-1,b=1,c=f and h(x)=(1+x)"%, the distribution
function is given by,

A0=1+x)%)*

= Ta—as o1

O0<x<oo, a,>0.

Let &(x)=x’,then
“a+1
V/(x)———{ax +Z[ J ””‘1}
(21 u=2
and
glaicn) +1\a(l-p)+1) .
Gl G
a0 =0 p q
Thus from relation (2.1), we have
E[X" (r,n,m,k)] = E[X" (r=1,n,m,k)]
a+l

|:E[X/J( k)]-i- 1 Z[a+1]E[X’j+u—l( k)]:|
=—— r,n,m r,n,m,
ﬂyr u=2 u

jA ettt B+1\(a(l-p)+1 ot
—1)f Jra ). 2.5
+aﬁ%; Z (-1) ( ) . ELX"77 (r,n,m k)] (2.5)

Set A =1, in (2.5) to get

E[X" (r,n,m, k)] = ELX" (r =1,n,m,k)]
o+l .
=——LVEIX" (r,n,m k)] +— ! Z( jE[X'””l(r,n,m,k)]
ﬂyr (24 u=2 u
as obtained by Khan and Kumar (2010).
3. Marshall-Olkin Extended Exponentiated Gamma Distribution

From (1.4) and for a=-1, b=1,¢c=6 and h(x)=(1+x)e", the distribution
function is given by,
A -1+ x)]°

F(x)= = — 7= 0<x<eo, 6>0.
{1-All-e"(1+x)]"}

Let &(x)=x’,then
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p(x)=jx +x77 = 7(x)
where 7(x)=x'"¢"
and

gl 2 = (1) 6+1 .
po==12 > > - (p ]@x

p=0 ¢=0 =0

Thus from relation (2.1), we have

E[X'j (r,n,mk)]— E[X’j (r—1,n,m,k)]

:#{E[X’f‘(r,n,m,k)]+E[X’f'z(r,n,m,k)]—E[T{X (r,n,m,k))1}

r

AL - 0+1 p 7 j+q+1-2
Z > Z “a- E[X"7*" 2 (r,n,m, )] (2.6)
9% =0 g0 1= 1! P )4
At A=1 in (2.6), we get

E[X" (r,n,m,k)]— E[ X" (r —=1,n,m,k)]

—L{E[X’f*‘(r,n,m,k)] +E[X"7 (r,n,m, k)] - E[t{ X (r,n,m,k)}1}

r

as obtained by Khan and Kumar (2011b).
4. Marshall-Olkin Extended Inverse Weibull Distribution

From (1.4) and for a=1b=0, c=1 and h(x)=e """, the distribution
function is given by,

—(01x)"
Fay=—2""  <r<oo 0,6>0.

[1—-Ae ")

Let £(x)=x’", then

w(x) :—(;;”1) X/t
and
o0 =YD 500)

where J(x)=x/"e 0"
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Thus from relation (2.1), we have
E[X"7 (r,n,m, k)] = E[X " (r =1,n,m, k)]

%{ AE[S(X (r,n,m,k)}1— ELX """ (r,n,m, k)] } 2.7)
p r

At A=1 in (2.7), we get

(j+D

P
r

E[X "7 (r,n,m, k)] = E[ X7 (r—1,n,m,k)] - E[X " (r,n,m k)] as

obtained by Pawlas and Szynal (2001).

5. Marshall-Olkin Extended Logistic Distribution

From (1.4) and for a=1,b=1, ¢=-1 and h(x)=e™", the distribution function
is given by,

Fy=—20re )
[1-A0+e™)7]

—o I x<oo,

Let £(x) = x’,then

w0 =—j(x + K(x)
and

(x) =—jK(x)

where x(x)=x'"e".
Thus from relation (2.1), we have

E[ X" (r,n,m,k)]—E[ X" (r—1,n,m,k)]

= _L{ E[X "7 (r,n,m, k)] + ﬂ,E[K'{X'(r,n,m,k)}]}.

r

3. RECURRENCE RELATIONS FOR PRODUCT MOMENTS

Theorem 3.1: For the Marshall-Olkin extended general class of distribution as
given in (1.4). Fix a positive integer k and for ne N, meR,
1€r<s<n, A>0,

E[E(X (r,n,m, k), X (s,n,m,k)}] = E[E{X (r,n,m, k), X (s —1,n,m,k)}]

1
cay,

s

Ew{X'(r,n,m,k), X (s,n,m,k)}]

+ E[o{X (r,n,m,k), X (s,n,m,k)}],(3.1)

cay,

s
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where
ayéf(x,y)
Ly)=[ah(y)+b ,
w(x,y)=[ah(y)+b] o)
*f(x y)

c+l ay
=lah(y)+b]" ——
o(x,y) =[ah(y) o)

Proof: We have from Athar et al. (2008),
E[E{X (r,n,m,k), X "(s,n,m,k)}]1 = E[E{ X "(r,n,m,k), X"(s =1,n,m,k)}]

- m”a Ex, MIF]" f(x0)g, " (F(x))

X, (F(y)) = h, (F Q)™ [F ()] dydx. (3.2)

Now in view of (1.5) and (3.2), we have

E[E(X (r,n,m, k), X (s,n,m,k)}]— E[E{X (r,n,m, k), X (s —1,n,m,k)}]

., Bx % f(x y)

r m r—1 7,—1
acr—Ds—r—D iy T8 (FEEW)]

X{h, (F(y) = h,, (F O™ {[ah(y) +b] = A ah(y) +bI™"} f (y)dydx,

which leads to (3.1).

Remark 3.1: Recurrence relation for moments of function of two order
statistics (at m=0, k=1) is

1
E[f(xn—rﬂ,n—ﬁl:n )] = E[g(Xn—r+l.n—s+2:n )] - —{E[l//(Xn—H—l.n—sH:n )]
ca(n—s+1)

_IE[¢(Xn—r+l.n—s+l:n )]} (33)

Remark 3.2: Recurrence relation for moments of function of two k —th lower
records will be

E[E(X (ron,—1,k), X (s,n,—1,k)}]= E[E{X (r,n,—1k), X (s —1,n,—1,k)}]
—L{E[l//{X(r,n,—l,k), X(s,n,—1,k)}]
cak

—AE[@{X (r,n,—1,k), X (s,n,—1,k)}1}.
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Remark 3.3: At A=1 in (3.1), we get

E[E(X (r,n,m, k), X (s,n,m,k)}] = E[E{ X (r,n,m, k), X (s —1,n,m, k)}]

—LE[l//{X'(r,n,m,k), X'(s,n,m,k)}]
c

K

as obtained by Athar et al. (2008).
Remark: 3.4: Set A=1 in (3.3) to get
E[f(Xn—rH,n—s-H:n )= E[f(Xn—r+1,n—s+2:n )]

1

-——F— Ely(X .
ca (I’l — g+ 1) [l//( n—r+l,n—s+l:n )]

as obtained by Ali and Khan (1998).
Examples

1. Marshall-Olkin Extended Generalized Exponential Distribution

From (1.4) and for a=-1,b=1, ¢c=/f and h(x)=e *, the distribution
function is given by,

_max\fB
Flx)= All—e™™)

= — 0 o, a, 0.
20— ™) <x< a,p>

Let &(x,y)=x'y’, then

w(xy) =Ly =nx, )
o

and

P(x,y) = —éV(x, ),
where
nex,y)=x'y"e”
and
v(x,y)=x'y e (1-e )P,

Thus from relation (3.1), we have
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E[X'i(r,n,m,k).X'j (s,n,m,k)]— E[X'i (r,n, m,k).X'j (s=Ln,mk)]

a,B {E[X”(r n,m,k).X " (s,n,m, k)] = E[p{ X "(r,n,m,k).X"(s,n,m,k)}1}

]/1
aﬁ;fs

At 1=1 in (3.4), we get

L EW{X'(r,n,mk).X"(s,n,m,k)}]. (34

E[X'i(r,n,m,k).X'j (s,n,m,k)]— E[X'i (r,n, m,k).X'j (s=Ln,mk)]

__J {ELX" (r,n,m, k). X7 (s,n,m k)] = Ep{ X (r,n,m. k). X (s,n,m, k) }1}
apy,

as obtained by Khan and Kumar (2011a).
2. Marshall-Olkin Extended Exponentiated Pareto Distribution

From (1.4) and for a=-1,b=1,c=4 and h(x)=(1+x)"%, the distribution

function is given by,
Ad=(1+x)9)*

[1-20-A+x)")T

F(x)=

O<x<oo, a,[>0.

Let £(x,y)=x'y’, then
o+l
S B W
u=2

and

B+l a(l-p)+l 1 1- 1y . .
P(x,y)=— (—1)”([3 " j[“( qp o jx’y”q‘.

J
ap:() q=0 p
Thus from relation (3.1), we have
E[X(r,n,mk).X" (s,n,m, k) — E[ X" (r,n,m,k).X" (s—1,n,m,k)]
A 8 el +1\ad-p)+1
__JA §Hst (—D”(ﬁ ](( p) ]
aﬁ% p=0 q=0 p q

XE[X " (r,n,m,k).X "7 (s,n,m, k)]
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—L[E[X"'(r,n,m,k).X’f'(s,n,m,kn

B,
1 & (a+1 , )i

+— EX"(r,n,mk).X"7™ " (s,n,m, k)] |. (3.5
a=\ u

Set =1, in (3.5) to get
E[X"(r,n,mk).X" (s,n,m, k)| —E[ X" (r,n,m,k).X" (s—1,n,m,k)]

:_L[ E[X" (r,n,m,k).X" (s,n,m,k)]
By,

1 ¢ (a+1 . i
— E(X"(r,n,m k). X" (s,n,m, k)] |.
au=2 u

as obtained by Khan and Kumar (2010).
3. Marshall-Olkin Extended Exponentiated Gamma Distribution

From (1.4) and for a=-1, b=1,¢c=6 and h(x)=(1+x)e*, the distribution
function is given by,

-x 4
Flx) = All—e*(1+x)]

= = — 7= 0<x<oeo, 6>0.
{1-All-e" 1+ x)]"}

Let £(x,y)=x'y’, then
p(x,y)=jlx'y 7 +x'y"™ = 7(x,y)]
where
7(x,y)=x'y’" e’
and
.9+1 p e 9+1 p o
Py ==j). . Z(—l)”( j( )(l— p) xylt
p=0 ¢=0 [=0 p q
Thus from relation (3.1), we have

E[X'i(r,n,m,k).X'j (s,n,m,k)]— E[X'i (r,n, m,k).X'j (s=Ln,mk)]

=9L{E[X (o m, k). X (s,n,m, )1+ E[X Y (ryn,myk).X 72 (s,m,m, k)]
7.

s
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—E[r{X(rnmk)X(snmk)]}+;zzi( 1)"( ]( ](1 p)

- 720 4=0 1=0
KE[X" (ronm.k). X 7 (5. nm. KL (3.6)
At A=1 in (3.6), we get
E[X" (r,n,mk).X" (s,n,m,k)]— E[X" (r,n,m,k). X" (s —1,n,m,k)]

= HL{E[X'i(r, nom, k). X 7 (s,n,m, )+ E[ X" (r,n,m k). X 7 (s,n,m, k)]
7,

—E[{X (r,n,m,k). X (s,n,m,k)]}
as obtained by Khan and Kumar (2011b).
4. Marshall-Olkin Extended Inverse Weibull Distribution
From (1.4) and for a=1,b=0, c=1 and h(x)=e %", the distribution
function is given by,

—(8/x)"
Fy=—2¢ <x<oo p.8>0.

[1-Ae "]
Let &£(x,y)=x'y’", then

(.] +1) xiyj+p+l

yx,y)= o7

and

(j+D
o(x,y) = 7 o(x,y)

where

ji+p+l _—(81y)"
Jti e( ))_

d(x,y)=x'y
Thus from relation (3.1), we have

E[X" (r,n,m, k). X" (s,n,m,00) = ELX" (r,n,m k).X 7 (s = 1,n,m, k)]

= U*D o o) X (s k)]

po’y,

)

l(]+1)
p9 7.

E[S8{X (r,n,m, k). X (s,n,m,k)]}. (3.7



40 Nayabuddin and Zuber Akhter

Set =1, in (3.7) to get
E[X " (r,n,m,k).X """ (s,n,m, k)| — E[ X" (r,n,m,k). X" (s —1,n,m,k)]
j+1

~ ey E[X" (r,n,m k). X7 (s,m,m, k)]

as obtained by Pawlas and Szynal (2001).
5. Marshall-Olkin Extended Logistic Distribution
From (1.4) and for a=1,b=1, ¢=-1 and h(x)=e™", the distribution function

is given by,

—x\—1
F(x)= Al+e™) —c0 < x < oo,

CH=A0+e )T
Let £(x,y)=x'y’, then
wx,y)=—jlx'y"™ + x(x, )]
and
o(x,y) == jK(x,y)
where &(x,y)=x'y' e’
Thus from relation (3.1), we have

E[X'i(r,n,m,k).X'j (s,n,m,k)]— E[X'i (r,n, m,k).X'j (s=Ln,mk)]

= —i{E[X"'(r,n,m,k).X'j’l (s,n,m, k)] + AE[K{X (r,n,m,k).X (s,n,m,k)}]}.

s

4. CHARACTERIZATION THEOREM

Theorem 4.1: Let X be an absolutely continuous random variable (rv) with
distribution function (df) F(x) and probability density function (pdf) f(x)
over the support (&, ), and ®(x) be a monotonic and differentiable function
of x, then for two consecutive values rand r+1, 2<r+1<s<n,

EL®(X (s, mm N X Lnmk) =x] =T +[ @0 -1 [ {/" 1]

j=r+l

I=r,r+1 and ¥, #1 4.1
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if and only if
ST : %’%f]m “
where, ®(x)=[ah(x)+b] .
Proof: To prove necessary part, for s> r+1,
E[D{X (s,n,m,k)}| X (r,n,m, k) = x]
_ C
(s—r=Dle, ,(m+1)"""
(T TR T )
x;[[ah(y)+b] {1—(“@] ] [F(x)} oo dy .
Set
- [ F(y) }’”” { Alah()+b) (1= Alah(x)+b] }T] ’
F(x) {1-Alah(y)+b]'} " Alah(x)+bI
which implies
[ah(y)+b]° = A +{[ah(x)+b] = A},
Then the RHS of (4.3) reduces to
- Coct [ 1A+ (lah()+b1 -7 ey
(s—r=Dlc, ,(m+1)"" o

(lahn+6T - T[] 7, 1
=1+ j=i+l B( /i ,s—r}.
(s—r=D(m+1"" (m+1)

Which after simplification, yields

E[{ah(X (s,n,m,k)+bY 1 X '(r,n,m,k) = x]

=Z+{[ah(x)+b]7c —Z} li[[ 4 ]

j=r+l 7]' -1

hence the ‘if part.

41

2)

3)
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To prove sufficiency part, let

E[{ah(X (s,n,m, k) +b} | X (r,n,m,k) = x]= g, (x)

or
_ - FT If;
gw(x)=,1+{[ah(x)+b] _/1}1111(7/_1]'
therefore,
_ - T 7
gw+l(x)=,1+{[ah(x)+b] _/1}1112[7]'_1].

Thus in view of Khan et al. (2010a)

d
f@_ 1 gy 8™
F(.X) yr+1 [gs\r-H (.X) - gslr (x)]

) I 4
1 R )
R = ~_ ATl Yo7 Sy p A
Foffc o =) 17 | 3-foar - 1 7
ach'(x)

~{[ah(x) +b]— 2lah(x) + b1}

implying that

Flx)= l[_ah(x) +b]° .
{1-Alah(x)+b]"}

Hence (4.2).
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