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ABSTRACT

This study analyses a transportation type fractional programming problem with
random demands and some or all inadmissible routes. In our model the random
demand has not been replaced by its expectation but the probabilistic nature of the
problem has been built into the problem formulation itself so that the system has
the opportunity to take maximum advantage of the probability distribution of
demand.

1. INTRODUCTION

At times there are transportation problems in which one of the sources is
unable to ship to one or more of the destinations. When this type of
problem occurs, then the problem is said to have an unacceptable or
prohibited route or inadmissible route. In the conventional approach the
demands are assumed to be fixed constants. However, in real life the
demands are usually uncertain and have to be treated as random variables
which create considerable complications. Complications are further
enhanced if some of the routes are inadmissible i.e. prohibited due to one
or the other reasons such as security, road construction, weight limits on
bridges, unexpected floods, transportation strikes, bad road conditions
and local traffic rules, etc. A very large cost is assigned to each of such
routes, which are not available. To block the allocation to a cell with a
prohibited route, we can cross out that cell.

Mou et al. (2013) considered a transportation problem, in which, the
truck times and transportation costs are assumed as uncertain variables.
Gabrel et al (2011) obtained a robust version of the location transportation
problem with an uncertain demand using a 2-stage formulation. The
obtained robust formulation is a convex (not linear) program, and they
applied a cutting plane algorithm to exactly solve the problem.

In theoretical aspect, Gao (2009) proved some properties of continuous
uncertain measure, and You (2009) gave some convergence theorems on
uncertain sequences. Yang (2011) studied moment inequality of uncertain
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variable. Liu (2008) proposed uncertain process and uncertain differential
equation, and Liu (2009) introduced uncertain calculus. Besides, Li and Liu
(2009) proposed uncertain logic and Liu (2010) introduced uncertain inference
to deal with uncertain knowledge. In practical aspect, uncertainty programming
was proposed by Liu (2009) as a type of mathematical programming involving
uncertain variables. It has been used to model system reliability design, project
scheduling problem, vehicle routing problem, facility location problem, and so
on.

So far, many researchers have done a lot of significant work in uncertain
demand but none of the author except Currin (1986) has used prohibited routes.
Only Shakeel (2008) and Javaid et al (2011) has used uncertainty with
prohibited routes.

The purpose of this paper is to study a fractional transportation problem
with uncertain demands and some or all prohibited routes. No doubt, the
prohibited routes may sometimes cause infeasibility Currin (1986), but
this study is concerned with feasible problems only. For dealing with
uncertainty of demands, we have used the technique of Dantzig (1963) as
applied by Shakeel and Gupta (2011).

2. FORMULATION OF THE PROBLEM

We consider a transportation problem with m sources and n sinks. The
mathematical model of the problem considered here is of the following form

Problem P1:

Min

( , )ij ij j j j
i j j

ij ij
i j

l x f r b

Z
c x



 


(2.1)

subject to

ij i
j

x a , 1,2, ,i m  (2.2)

ij j
i

x d , 1,2, ,j n  (2.3)

0ijx ( , )i j (2.4)

where

, , , 0ij ij j il c r a  ( , )i j

and



An algorithm for stochastic ……..inadmissible routes 131

ia is the supply of a single homogeneous product available at origin i .

ijx is the amount of the product transported from origin i to destination

j .

ijc the per unit transportation cost on the route ( , )i j .

jf  are the expected value functions to be determined according to the

interpretation of the problem.

ijl = per unit loss due to pilferage etc. on the route ( , )i j .

jr = is the revenue received for each unit of demand satisfied at destination

j .

jd  are independent random variables with following probability

distribution j .

Demand jd jd1 jd2 ... jH j
d

( )j hj hjp b b p  jp1 jp2 ... jH j
p

( )j hjp b b 1
1

jH

j hj
h

w p


 2
2

jH

j hj
h

w p


 ... j jH j H jw p

(After using the above table, the value of the unknown function ( , )j j jf r d so

obtained is as follows (Javaid et al (2008, 2011).

1

( , )
jH

j j j j hj hj
h

f r b r w y


 (2.5)

3. DETERMINISTIC EQUIVALENT PROBLEM FORMULATION

Substituting the value of
1

( , )
jH

j j j j hj hj
h

f r b r w y


 from (2.5) in (2.1), the

objective functional becomes as

ij ij j hj hj
i j j h

ij ij
i j

l x r w y

Z
c x



 


(3.1)

If both ijx and hjy are treated as decision variables, the deterministic equivalent

to Problem P1, called the Problem P2 is:
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Problem P2:

Min 1

2

ij ij j hj hj
i j j h

ij ij
i j

l x r w y
Z

Z
Zc x


 
 


, (3.2)

where ( )hj j hjA r w  .

Subject to

ij i
j

x a , 1,2, ,i m  (3.3)

0ij hj
i i

x y   , 1,2, ,j n  (3.4)

, 0ij hjx y  , ,i h j (3.5)

hj hjy U ,h j (3.6)

and subject to the additional stipulation hjy as satisfied by Javaid et al (2008,

2011).

Fortunately, it turns out that hjy do not restrict our choice of optimum solution

in any way. This can be handled by the theorem as given by Javaid et al. (2008).

4. PRELIMINARIES TO THE SOLUTION OF PROBLEM P4

i) It is assumed that the set of all feasible solutions of Problem P2 is regular
(i.e. non- empty and bounded) and that the denominator of the objective
functional is positive for all feasible solution.

ii) Since the deterministic Problem P2 is a transportation type fractional linear
fractional programming problem with upper bound restrictions on some
variables.

iii) A global minima to the Problem P2 exists at a basic feasible solution to the
capacitated system.

iv) As none of the constraints in the original system is redundant, a basic
feasible solution to the original system shall contain )(2 nm  basic
variables. For the capacitated system also, a basic feasible solution shall
contain )(2 nm  basic variables, Dantzig (1963).

The special structure of Problem P2, permits us to arrange it into an array as
shown below, Garwin (1963).
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Table 1:

11

11 11

x

l c
12

12 12

x

l c
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1 1
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l c 1a
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21 21

x
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    

1

1 1

m
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x
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11

11

y

A
…… ……

1

1

n

n

y

A

   

1

1

H

H

y

A
…… ……

Hn

Hn

y

A

0 0 …… 0

In the above table, there are ( )m H rows where jHH .max . Obviously

there shall be some empty boxes near the bottom of the table which shall be
crossed out. Absence of the row totals for syhj ' in the table indicates that there

are no row equations for hjy variables. Besides, to obtain the column equations

(3.4), each hjy has to be multiplied by )1( . We have omitted )1( from hjy

boxes for convenience.

5. INITIAL BASIC FEASIBLE SOLUTION

To start with, we fix the demands 'jd s approximately equal to their expected

values such that
1 1

n m

j i
j i

d a
 

  and also such that for all j except *jj  , each

jd falls at the upper end of one of the intervals hjy into which jd has been

divided, i.e.,
1

jh

j hj
h

d U




 for some ij Hh  and for all j except *jj  .
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With these fixed demands the upper portion of the Table 1 resembles a m n
standard transportation problem for which an initial basic feasible solution with
( 1)m n  basic variables is obtained by any of the several available methods.

Now, in each of the columns, the values of the non basic syhj ' are entered at

their upper bounds in turn ,2,1h until we have entered enough non basic

syhj ' so that their sum over h is equal to jd . Obviously, we shall never have

to enter hjy below its upper bound except in column *jj  , where the last

nonzero entry will be * *hj hj
y U . This last entry and the ( 1)m n  basic sxij '

found earlier constitute the required initial basic feasible solution with ( )m n

basic variables. In case the last non zero entry in column *j is also at its upper

bound, then we take the last hjy entry of any column as our ( )m n  th basic

variable.

6. SIMPLEX MULTIPLIERS AND OPTIMALITY CRITERIA

Let the simplex multipliers corresponding to the objective function

1 ij ij hj hj
i j j h

Z l x A y   be iu and jv ( , 1,2, , )i j n  

and corresponding to the objective function

2 ij ij
i j

Z c x 2Z be i and i ),,2,1,( nmji  

These are determined by solving the following equations.

0 for basic

0 for basic

ij i j ij

hj j hj

l u v x

A v y

   
  

(6.1)











hjj

ijjiij

yv

xc

basicfor0

basicfor0
(6.2)

Each of the system (6.1) and (6.2) have )(2 nm  linear equations in as many

unknowns iu , jv , i and j and can be easily solved. Let the relative cost

coefficients corresponding to the variables ijx and hjy be ijl and hjA for 1Z

and ijC  and hjB for 2Z .

These are determined by solving the following equations
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for non basic

for non basic

ij ij i j ij

hj hj j hj

l l u v x

A A v y

    
   

(6.3)

for non basic

for non basic

ij ij i j ij

hj j hj

C c x

U v y

     
   

(6.4)

The relative cost coefficients for basic variables and the values of the non
basic sxij ' are zero. As regards the values of non basic syhj ' - some are zero

and others at upper bounds.

It can be easily shown that for a given basic feasible solution ),( hjij yx of  the

Problem P3, the value of the objective function Z is

1 1 1 1 1 1

2

1 1 1 1 1

( )

( )

j

j

Hm n m n m n m

ij ij hj hj i i
i j j h i

Hm n m n m n m

ij ij hj hj i i
i j j h i

l x A y u a
Z

Z
Z

C x B y a

  

    

  

    

  
 

  

   

   
(6.5)

But the relative cost coefficients for basic variables and also the values of the
non basic ijx are zero, but as regards the values of non basic syhj ' - some are

zero and the others are at their upper bounds. Hence,

* *

1 1 1 1

2* *

1 1 1

( )

( )

j

j

Hm n m

hj hj i i
i h i

Hm n m

hj hj i i
i j i

A U u a
Z

Z
Z

B U a



  


  

 
 

 

  

  
, (6.6)

where  * indicates the sum over those non basic hjy which are at their upper

bounds. Now if the value of any one of the non basic variables stx or rty is
changed to

)(ˆ  stst xx or )(ˆ  rtrt yy

The improved value of Z can be obtained by Javaid et al. (2008, 2011) as
follows

Thus, the current solution is optimum iff

0 (  non basic )

0 (  non basic at zero level)

0 (  non basic at upper bound)

ij ij

hj ij

hj hj

D x

D y

D y

 


   
   

(6.7)
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where we define the following

2 1

2 1

ij ij ij

hj hj hj

D l Z C Z

D A Z B Z

  
    

If any of the optimality criteria (6.7) is violated, the current solution can be
improved. The non basic variable which violates (6.7) most severely is selected
to enter the basis. The values of the new basic variables are found by applying
the usual  -adjustments. It should, however, be kept in mind that the coefficient
of each hjy in column equations (4.8) is )1( . The variable to leave the basis is

the one that becomes either zero or equal to its upper bound. If two or more
basic variables reach zero or their upper bounds simultaneously then only one of
them becomes non basic. Should it happen that the entering variable itself
attains upper or lower bound (zero) without simultaneously making any of the
basic variables zero or equal to its upper bounds, the set of basic variables
remains unaltered; only their values are changed to allow the so-called entering
variable to be fixed at its upper or lower bound.

7. ALGORITHM OF THE DETERMINISTIC PROBLEM

The step-by-step computational algorithm for determining the optimum solution
is given as follows:

Step 1- First of all calculates initial/improved basic feasible solution and records
them in a working table.

Step 2- Then obtain the values of simplex multipliers iji vu ,,( and )jv and

the relative cost coefficients from the given equations (6.1), (6.2), (6.3) and
(6.4).

Step 3- Calculate the value of the objective function 1 2/Z Z Z by the equation
(4.5).

Step 4- Then for the non-basic variables, calculate ijD and hjD and test whether

the solution is optimum or not. If yes, the process terminates and if not, proceed
to find the ijD ( o r )hjD which violates the optimality criteria (6.7), most

severely.

Step 5- Find the entering variable as the one who’s corresponding ijD

( o r )hjD violates the optimality criteria most severely.

Step 6- Apply  adjustments and determine the outgoing variable (if any) and
find the maximum value  .

Step 7- Go to step 1.
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