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ON EXTENDED ALTERNATIVE HYPER-POISSON DISTRIBUTION

C. Satheesh Kumar and B. Unnikrishnan Nair

ABSTRACT

Here we introduce an extended version of the alternative hyper-Poisson
distribution of Kumar and Nair (Statistica, 2012a) and study some of its important
properties. The maximum likelihood estimation of the parameters of this extended
version is also discussed and demonstrated its usefulness with the help of some
real life data sets.

1. INTRODUCTION

The hyper-Poisson distribution ( )HPD of Bardwell and Crow (1964) has the
following probability mass function ( . . .)p m f , in which 0,1,2,...x  .
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where  > 0,  > 0 and ( a;b;x ) is the confluent hypergeometric series
(Mathai and Haubold, (2008) or Slater, (1960)). When 1  , the hyper-Poisson
distribution reduces to Poisson distribution and when  is a positive integer, the
distribution is known as the displaced Poisson distribution considered by Staff
(1964).  Bardwell and Crow (1964) termed the distribution as sub-Poisson when

1  and super–Poisson when 1  . Various methods of estimation of the
parameters of the distribution were discussed in Bardwell and Crow (1964) and
Crow and Bardwell (1965). Some queuing theory with hyper-Poisson arrivals
has been worked out by Nisida (1962). Roohi and Ahmad (2003a) attempted
estimation of the parameters of the hyper-Poisson distribution using negative
moments. Roohi and Ahmad (2003b) derived expressions for ascending factorial
moments and further obtained certain recurrence relations for negative moments
and ascending factorial moments of the hyper-Poisson distribution. Kemp
(2002) developed q-analogue of the distribution and Ahmad (2007) introduced
and studied Conway-Maxwell hyper-Poisson distribution. Kumar and Nair
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(2011, 2012b) developed and studied certain modified form of the HPD .
Kumar and Nair (2012a) considered a new version of hyper-Poisson distribution
namely `the alternative hyper-Poisson distribution ( )AHPD  with ( . . .)p m f
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    (1.2)

for 0,1,2,...,y  0  , 0 

and ( ) ( 1)...( 1) ( ) / ( ),ka a a a k a k a       

for 1, 2,...k  and 0( ) 1a  . An interesting property of the AHPD is that it is
under- dispersed when 1  and over dispersed when 1  .

Through this paper, we obtain an extended version of the alternative hyper-
Poisson distribution which we call “the extended alternative hyper-Poisson
distribution” or in short “the EAHPD ”. In section 2 we establish that the
EAHPD possess a random sum structure and it is shown that both the Hermite
and generalized Hermite distributions are special cases of the AHPD . In section
3, we derive the explicit expressions for its probability mass function, mean and
variance. Certain recurrence relations for probabilities, raw moments and
factorial moments are also obtained in the section. The maximum likelihood
estimation of the parameters of the EAHPD has been discussed in section 4 and
section 5 contains some numerical illustrations for emphasizing the usefulness
of the model.

2. GENESIS AND SPECIAL CASES

Consider a non-negative integer valued random variable y following the
AHPD with . . .p m f (1.2) and probability generating function ( . . .)p g f

( ) [1; ; ( 1)].G t t    (2.1)

Let { , 1}nZ n  be a sequence of independent and identically distributed random

variables, where nY has the following . . .p g f , in which m is a positive integer.

( ) (1 ) .mQ t t t    (2.2)

Let 1 0  and 2 0  such that 1 2    and 1
1    . Suppose that

1 2, , ,...Y Z Z are statistically independent and let 0 0S  . Set
0

Y

Y n
n

S Z


 .  Then

the . . .p g f of YS is
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{ [ / ]}YS
YE E t Y
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( ( ))G Q t

1 2[1; ; ( 1) ( 1)].mt t       (2.3)

We define a distribution with . . .p g f (2.3) as ‘the extended alternative hyper-
Poisson distribution’ or in short ‘the EAHPD ’. Clearly, EAHPD with 1m  or

2 0  is the AHPD . When 1  the EAHPD with p.g.f. (2.3) reduces to the
. . .p g f of generalized Hermite distribution of Gupta and Jain (1974) and when

1  and 2m  ,  the EAHPD reduces to the . . .p g f of the Hermite
distribution of Kemp and Kemp (1965).

3. SOME IMPORTANT PROPERTIES

In this section we obtain some important properties of the EAHPD . Let U be a
random variable following the EAHPD with . . .p g f

1 2( ) [1; ; ( 1) ( 1)].mH t t t      

0
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in which (1, ) ( ), 0,1,2,...nh P U n n    . On expanding (3.1) and equating the

coefficients of ,nt we get the following result.

Result 3.1 The probability mass function ( . . .)p m f (1, )nh  of the EAHPD with
. . .p g f (3.1) is the following, in which ( 1)n m k    .
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for n  0, 1, 2, …, ( ) ( 1)...( 1),ra a a a r    for 1,r  such that 0( ) 1a  and

 k denote the integer part of k . Further we obtain the following results.

Result 3.2 The mean and variance of the EAHPD with . . .p g f (3.1) are

( )E U  1 2

1
( )m 


 , (3.3)

( )Var U = 2 2
1 2 1 2

1 2 1 1
( ) ( )

1
m m   

   
 

     
, (3.4)

The proof is simple and hence omitted.

Remark 3.1 Result 3.2 shows that the EAHPD is over-dispersed ( that is, mean
less than variance) when 1  and under dispersed when 1  and satisfying

the following inequality, for 1m  and 2 0  .
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Result 3.3 A recurrence relation for the probabilities (1, )rh  of the EAHPD

with . . .p g f (3.1), for ( 1)n m  is

 * * *
1 0 1 2 1( 1) ( ) ( 1) ( 1) ,n n n mn h d h m h           (3.5)

in which * *(1, ), 1 (2, 1)       and 1
0d   .

Proof On differentiating (3.1) with respect to t , we get the following.
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Replacing  by 1  in (3.1) to obtain the following.
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Relations (3.6) and (3.7) together lead to the following relationship:
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Now, on equating the coefficients of nt on both sides of (3.8) we get (3.5).

Result 3.4 For 1n  , a recurrence relation for factorial moments  
*( )r  of the

EAHPD is
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in which  
*

0 ( ) 1  

Proof The factorial moment generating function ( )UF t of the EAHPD with

. . .p g f (3.1) is the following
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On differentiating (3.10) with respect to ‘ t ’ to obtain

 
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By using (3.10) with  replaced by 1  we get the following from (3.11).
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On equating coefficients of 1( !) rr t on both sides of (3.12) we get (3.9).

Result 3.5 For 0r  , a recurrence relation for the raw moments *( )r  of the
EAHPD is
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Proof The characteristic function ( )U t of the EAHPD with . . .p g f (3.1) has
the following series representation. For t R ,
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On differentiating (3.14) with respect to t , we obtain
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By using (3.14) with  replaced by 1  , we get the following from (3.15).
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On equating the coefficients of 1( !) ( )rr it on both sides we get (3.13).
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4. MAXIMUM LIKELIHOOD ESTIMATION

In this section we consider the estimation of the parameters of the EAHPD by
the method of maximum likelihood. Here we assume that m is a fixed  known
positive integer. Let a(x) be the observed frequency of x events and let y be the
highest value of n observed. Then the likelihood function of the sample is

* ( )

0

[ ( )] .
y

a x
x

x

L h 


 (4.1)

Taking logarithm on both sides of (4.1) we get
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0
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Let 1̂ , 2̂ and ̂ denote the maximum likelihood estimators of 1 , 2 and 

respectively. Now 1̂ , 2̂ and ̂ are computed by solving the following

equations, obtained from (4.2) on differentiation with respect  to 1 , 2 and 
respectively and equating to zero.
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5. CONCLUDING REMARKS

In section 2, we have shown that the EAHPD possess a random sum structure.
Such random sum distributions have found extensive applications in several
areas of scientific research. For a detailed account of random sum distributions
refer chapter 9 of Johnson et al. (2005). Here we consider two real life data sets
for demonstrating the estimation procedures discussed in section 4 and for
illustrating the usefulness of the model. We have obtained maximum likelihood
estimates and variances of the parameters of EAHPD for 1, 2, 3, 4m  and

using MATHCAD software and there by computed expected frequencies, 2 -
values and p - values. The results obtained are given in Table1 and 2. It can be
observed from tables that both HPD and AHPD are not giving good fit to both
data sets, where as the EAHPD with 4m  gives the best fit in case of first data
set and the EAHPD with 3m  gives the best fit in case of second data set
compared to the existing model.
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Table 1: Observed distribution of Ribes [Fracker and Brischle 1944] and the
expected frequencies computed using HPD , AHPD and the EAHPD
for 2,3,4m  and 5 .

x Obser
v
ed

freque
ncy

Expected frequency by method of maximum likelihood

HPD AHPD EAHPD
with

2m 

EAHPD
with

3m 

EAHPD
with

4m 

EAHPD
with

5m 

0

1

2

3

4

5

6

7

43

15

8

6

3

4

0

1

34.14

22.23

12.61

6.34

2.86

1.17

0.44

0.15

33.53

21.68

12.69

6.70

3.19

1.38

0.54

0.19

45.18

14.91

13.08

4.02

1.99

0.55

0.20

0.05

41.68

19.60

5.76

6.97

3.59

1.10

0.74

0.36

40.52

19.17

9.00

4.20

2.91

1.80

1.04

0.58

39.48

19.61

9.69

4.76

2.32

1.63

1.04

0.63

Tot
a l

80 80 80 80 80 80 80
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Estimated
value of

parameters 748.6ˆ
39.41̂







167.3ˆ
65.31̂









104.1ˆ
339.0ˆ
436.0ˆ

2

1













374.1ˆ
216.0ˆ
736.0ˆ

2

1













117.36ˆ
671.1ˆ
041.33ˆ

2

1













413.43ˆ
102.1ˆ
938.42ˆ

2

1











2 8.13 49.694 9.012 207.13 1.869 2.742

P-value 0.004 0.014 0.011 0.097 0.172 0.098

Table 2: Observed distribution of the counts of Red mites on Apple leaves
[P.Garman,1951] and the expected frequencies computed using
HPD and the AHPD as well as the EAHPD for 2m  and 3m 
by method of maximum likelihood.

x Observ

ed

frequency

Expected frequency by method of maximum likelihood

HPD AHPD EAHPD
with 2m 

EAHPD
with 3m 

0

1

2

3

4

5

6

7

8

70

38

17

10

9

3

2

1

0

60.32

42.80

25.24

12.73

5.61

2.19

0.77

0.25

0.07

46.12

58.60

31.29

10.67

2.68

0.53

0.09

0.01

0.001

26.19

44.89

43.85

19.32

10.37

3.46

1.35

0.39

0.12

69.94

40.60

14.64

12.63

7.13

2.60

1.38

0.68

0.24

Total 150 150 150 150 150

Estimated   value
of parameters

911.4ˆ
485.31̂









863.0ˆ
962.01̂









519.0ˆ
153.0ˆ
209.0ˆ

2

1











326.1ˆ
193.0ˆ
887.0ˆ

2

1











2 9.5 32.986 96.68 1.95

P-value 0.009 0.11 0.27 0.52
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