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ABSTRACT

This paper considers the problem of estimating parameters of a mixture
distribution (Rectangular/Exponential) using the method of moments, their
functions and ratios mainly by simulation. Estimated the values of parameters, for
the case (1) “ p’ unknown, (2) * p’ is known and are presented in tables and
graphs. As sample size ‘m’ increases the proportion of acceptable sample
estimates are also increases. However, it is possible that a sample gives estimates
which are not in the acceptable range (negative, complex, p>1 or p<0).

1. INTRODUCTION

The present study deals with the problem of estimating parameters in mixture of
two distributions from the same family. In particular, the cases of exponentia
and rectangular populations are considered.

Methodology adapted is to find the estimates of parameters by functions of raw
moments as obtained by a sample. These functions are polynomial functions of
raw moments: their ratios turn out to be simple functions of the parameters from
which estimation will be possible. A major problem in this context is that higher
order sample moments have a high variability from sample to sample and their
ratios will be even more fluctuating. Hence, one may expect relatively less
efficiency of estimates obtained; often the estimates may even be outside
acceptable range. Simulation studies are carried out to find how the quality of
‘estimates’ improves with varying sample size. The application of mixture
digtributions are very much used in Reliability and many of the Biometric,
Engineering and Socia Sciences.

2. ABRIEF REVIEW

Two essentially different approaches can be seen in attempts for estimating the
parameters of the mixture distributions.
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1. Individual values of observations *x ’ are directly used, for example in
method of moments or maximum likelihood.

2. Cumulative distributions of mixture models are fitted to the empirical
cumulative distribution function from the sample. (Essentialy, by least
squares, weighted and / or non linear as the case may be).

In this case the graphical methods using specia graph papers like the normal,
log, double log are used to study the possibility of data from mixture of specific
types of distributions. In particular this approach has been attempted by Harding
(1948).

Edward and Flowsky (979), consider the case of mixture of two normal (Log
normal) distributions. A method, the f — P versus Q — plot, is developed that is,

more sensitive to the presence of mixtures than more familiar methods. A series
of ad-hoc methods that produce initial guesses for parameter values is aso
presented. Two methods of global estimation given initial parameter guesses are
presented and compared. These methods are the maximum likelihood and a least
squares procedure that fits the sample quantiles to the inverse distribution
function of the mixture. The sensitivity of the method to poor choices for initia
guessesis aso considered.

Smiley W. Cheng and James C. Fu (1982) considered cumulative distribution
function of mixture of two Weibull distributions. Weighted least squares is
proposed for estimating parameters when data are grouped and censored, Dan
Ling et al. (2009), discusses Nonlinear least square versus graphical methods for
the same case.

The other approach is based on functions of individua sample values like
moments, maximum likelihood function etc. Brief comments on attempts using
this approach are given below:

Rider (1960), considered the problem of mixture of two exponentia
distributions. He noted that method of moments gives unacceptable estimates;
however when a=bthe proposed estimators are consistent. Also, he found

variance of the asymptotic distributions of a” and b". He aso, finds out that a
chi-sguare test for single exponential can be misleading; a null hypothesis that
data are from a single exponential often gets accepted, when a chi-square test for
goodness of it is carried out.

Blischke (1962) considers mixture of two binomials with same ‘n’ but with
different parameters p, and p, and with mixture parameter p and q=1-p
and points out some theoretical anomalies about relative efficacy of estimators.

Tallis and Light (1968) use fractional moments for estimates of parameters, and
compare method of moments with  maximum likelihood method and observes
that maximum likelihood method involves much larger amount of calculation
without increasing in acceptability of estimates of mixed exponentid
distributions.
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Maximum likelihood method for the estimation of the parameters of the mixed
normal was first considered for s, =s, by Rao (1948). Hasselblad (1966)

considered the k — component normal mixtures where k is known: here the k
means, k variances and k —1proportions are to be estimated using maximum
likelihood estimates for single truncated normal populations. A method of
steepest descent which aways converged to maximize the likelihood function of
the entire sample is used. Special cases of equal variances and variances
proportional to the sguare of the mean are also considered.

Day (1969) discusses the method of moments, minimum chi-square and Bayes
estimators. He also points out that they appear greatly inferior to maximum
likelihood in a mixture of two Normal, multivariate, but with unknown
covariance matrices.

Craigmile and Titterington (1977) extend the result of Gupta and Miyawaki
(1978) and deals with 2 and 3 component mixture of Rectangular distributions.
Method of moments and maximum likelihood was discussed.

Hussain and J-Liu derived (2009) L —moment estimators of parameters of
mixture of two rectangular distributions. They considered possible cases
namely, (1) neither over lap or gap, (2) with over lap and with gap, they note
that comparison of the two usual maximum likelihood, and method of moments
and modified maximum likelihood method. The L — moment estimates have less
bias and more efficient in many cases.

It is pointed out that, most of the above methods require large samples.

3. METHODOLOGY OF THE PRESENT APPROACH
The Case of Rectangular Mixture

Let the two rectangular distributions be in the ranges as 0—»a and 0—b
and mixture parameter be givenas p: (1- p), where 0< p<1, the observation

‘x’ come from either the 1st or 2nd population with probabilities p and
g=1-p.
The k—th raw moment is given by

k k
m(g =22 L9 ©
Then, the raw moments are
pa+gb=2m’ (1a)
pa® + gb® = 3m," (1b)
pa® +qgb® = 4m," (1c)

pa* + gb* =5m," (1d)
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Using the above functions of moments one can get the following relationship.

s=3m, '—(2rq')2 = pq(a—b)2 (2a)
5 =(4m)—(6m,'m ‘)= py(a-b)’ (a+b) (2b)
s,=(3m,)—(8my'm ") = pq(a—b)z(a2+b2+ab) (20)

One can egtimate the simple functions a+b and a—bof the parameters by
taking the ratios of these functions as given below:

(a+b)= (3a)

S

(a-b) :i\/4(3—82j—3(%1j2 (30)

Solving (3a) and (3b) using the observed (that is sample) moments, one gets

(2)=(2)-42

2

a=

and

b=

2 5 (42)
S

From (44Q)

_len)
a-b

3.1 The case of Exponential Distribution

Let the two exponentia distributions be with the parameters a and b with

mixture parameter p and q=1- p; that is, the observation ‘ x ’ comes from

population with density function 1.x or N with probabilities p and
ae a be a
g=1-p.
The four corresponding moments are theoretically
, ak + gb“
m'(k) :% ()

Then the raw moments are
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pa+gb=2m' (52)
2( pa® + qbz) =m,’ (5b)
6( pa’+gb*) = m,’ (5b)
24( pa’ + qb“) =m,’ (5d)
Using the above functions of moments one can get the following relationship.
s=m,-(2m’)* =2pq(a-b)’ (69)
s =m;'~(3m,'m ) =6pq(a-b)*(a+b) (6)
sz=m4'—(4m3'ml')=24pq(a—b)2(a2+b2+ab) (6€)
From the above functionsit follows that
(a+b)= 3_52 (73)
@)= 2] 2] )
12s 3s

Solving (7a) and (7b)

({24

a=
and

b="2_3a (89)
From (8a)

(-9

a-b
In each of the cases, two sub-cases namely (1) when p is unknown and (2) when
p is known (not to be estimated) are considered, with obvious modifications in
the estimators. However, the present approach though often gives unacceptable
estimates, can be modified by selective sub sampling, to get acceptable and
useful estimates.
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4. METHODOLOGY OF SIMULATION IN THE PRESENT STUDY

Below is given the procedure to generate mixture of two rectangular
digributions; the same with obvious modifications is used to generate the
exponential mixtures.

Consider a particular mixture, with parameters a and b and mixture parameter p
and q=1- p; for a given sample size ‘m’, n samples are generated from each
of the rectangular distributions x, and x, respectively. Let ‘r ’ be a random
matrix of size mxn from uniform 0—1. The mxn matrix x=Xx(i,]), is
constructed as follows:

Ifr(i,i)<px(i,j)=x(i.i); ese r(i,j)<p.x(i,j)=x(i.])-

This matrix “ x” has its ‘n’ columns as independent samples from the desired
mixture distribution. Using these samples along with the formulae given above
(24, 2b, 2¢) we get estimates of a,b, p. However, of these estimates quite afew

turned out to be unacceptable, of being either negative or complex or p>1 or
p<0. Excluding these unacceptable values the mean, s.d, min, max etc., of

these retained estimates are computed and reported. In this filtering, even if one
of the estimates of parameters is unacceptable the other estimates are excluded
from consideration. The proportions of acceptable estimates are recorded in
tables.

In such cases, samples which give an unacceptable estimates are obtained it is
proposed to go for some sort of sub sampling (like bootstrap method), and take a
weighted average estimates for the same.

4.1 The Procedur e Followed as given aboveis|llustrated Below

Here we have taken n=10 samples, each of size m=5 of two rectangular
distributions x, and x, with range 0— a(=5) and 0— b(=3) of size mxn.
From these samples a mixture sample p=0.2p=0.2 is generated as follows:

Another random matrix ‘r * from uniform 0—1of size mxn is generated.
Now mixture distribution ‘x” is constructed as follows:

If

r(i, i) < px(i, i) =%, );
ese

r(i, )< px(i, )=, );

For illustration Let us consider:
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X, = Simulated Rectangular distribution with parameter “a’, * p” of size 5x10

4.7506

3.8105

3.0772

2.0285

0.2895

1.0138

0.0764

2.0932

4.1906

2.5141

1.1557

2.2823

3.9597

4.6773

1.7643

0.9936

3.7339

4.2311

0.0982

3.5474

3.0342

0.0925

4.6091

4.5845

4.0658

3.0190

2.2255

2.6258

3.4064

2.1445

2.4299

4.1070

3.6910

2.0514

0.0493

1.3609

4.6591

1.0132

1.8974

15231

4.4565

2.2235

0.8813

4.4682

0.6945

0.9941

2.3300

3.3607

4.1590

0.9483

X, = Simulated

Rectangular distribution with parameter ‘b’ , “ q’ of size 5x10

0.5803

2.0937

1.487

1.9807

2.1813

2.1082

2.3845

2.9392

0.4096

1.9843

2.0467

1.1351

2.6993

1.0259

0.9279

1.6397

2.8705

0.8143

0.0353

0.8532

0.9083

2.5800

2.4649

0.8692

25155

1.3346

1.5678

0.7570

2.6817

1.4077

1.6250

2.5610

1.9347

1.0236

1.7042

2.0837

2.6404

2.6272

0.5974

0.1943

0.4526

1.7807

2.4539

1.6022

1.1112

1.8639

0.5189

2.2119

0.8962

2.9650

r = Random matrix of size 5x10

0.5828

0.2259

0.2091

0.5678

0.4154

0.9708

0.2140

0.4120

0.6833

0.2071

0.4235

0.5798

0.3798

0.7942

0.3050

0.9901

0.6435

0.7446

0.2126

0.6072

0.5155

0.7604

0.7833

0.0592

0.8744

0.7889

0.3200

0.2679

0.8392

0.6299

0.3340

0.5298

0.6808

0.6029

0.0150

0.4387

0.9601

0.4399

0.6288

0.3705

0.4329

0.6405

0.4611

0.0503

0.7680

0.4983

0.7266

0.9334

0.1338

0.5751

x = Simulated Mixture distribution with parameters ‘a’ b’ ,* p’

0.5803

2.0937

1.4897

1.9807

2.1813

2.1082

2.3845

2.939

0.4096

1.9843

2.0467

1.1351

2.6993

1.0259

0.9279

1.6397

2.8705

0.814

0.0353

0.8532

0.9083

2.5800

2.4649

4.5845

2.5155

1.3346

1.5678

0.757

2.681

1.4077

1.6250

2.5610

1.9347

1.0236

0.0493

2.0837

2.6404 | 2.6272

0.5974

0.1943

0.4526

1.7807

2.4539

4.4682

11112

1.8639

0.5189 | 2.2119

0.8962

2.9650

Now, the matrix has its columns as samples from the desired mixture.
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r(4,1)=0.58>0.
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5. NUMERICAL ILLUSTRATION

2,

X(1,2)=0.22>0.2,
X(4,5)=0.01<0.2;
X(5,4) =0.01<0.2;

x(1,1) = %,(2,2) = 0.5803;
x(1,2) = %, (1, 2) = 2.09;
X(4,5) = %,(4,5) = 0.04;
X(5,4) = %, (5,4) = 4.4654

The first 4 sample moments for each of the 10 samples are computed. Using
these functions of raw moments and their ratios as stated earlier, these are used
to estimate the parameters of ‘a’, “‘b’, “ p’ respectively. The first 4 sample

raw moments (m ,my, ,my; ,m;, ) functions and their ratios are:

S.No. 1 2 3 4 5 6 7 8 9 10

ml, _|0.1784 | 0.2227| 0.1883| 0.1614 | 0.3027 | 0.4077 |0.0834 | 0.2567 | 0.2098 |0.2936

mé _[0.9411 | 1.8804| 1.1157| 0.8586 | 2.3515 | 4.4968 |0.6079 | 1.8564| 1.3619 |2.4757

n,bf _|1.0630 | 3.3676| 1.5623| 1.0503 | 3.7639 | 10.6427 | 1.0352 | 3.0263| 1.9640 |4.3480

m; _ | 1.2408 | 6.1380| 2.4413| 1.3803 | 6.2178 | 26.6259 | 1.7872 | 5.4479| 2.9888 | 7.7547
Functional values are:

S.No. 1 2 3 4 | 5 6 7 8 9 10
szsmé _(2ml' )2 -0.123 | -3.250| -4.302 | 0.817 |0.544| -3.008 | -1.767 |-0.984| 5.066 | 0.513
S.L:4mé —6m. ml'2 0.080 |-13.530| -19.197| 8.795 |1.304| -10.916 | -8.907 | -4.368| 25.879 | 2.335
S, =5m"1 _8mé ml' 0.386 |-44.988| -66.707| 39.53 |3.134| -30.463 | 35.472 |-18.537120.234| 8.873

W:SJ./ S -0.654 | 4162 | 4.462 | 10.75 |2.397| 3628 |5.0383 | 4.436| 5.108 |4.550
w, =4 )

S

) -13.840 | 3.380 | 2.287 |-153.71/5.809| 1010 | 4.097 |16.246| 16.649 | 7.046
g2

S
Sqrt(W4) 1615 | 2446 | 2242 | 1.843 |2.311| 3537 | 2161 | 2596 | 2.124 | 2.444
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From the above set, the sample numbers 1 and 4 are eliminated, Since w and,
W, =(a- b)2 should not be negative and the remaining values are substituted in
the given formula.

(e{2){3)

a=
and

Bz[ij _a (4)
From (4Q)

_ (2m-b

aesy

Then using 8 samples we have the following estimates as:

Table 1. Estimates of parameters of mixture distribution

SNo.| 2 3 5 6 7 8 9 10

a |3.0007|2.9872| 2.4036| 2.3167|3.5314| 4.2338 |4.5943 | 3.6023

p |1.1620|1.4748/-0.0067 1.3114/1.5072| 0.2031 |0.5140|0.9479

p |1.5762|1.9454) 1.1288|2.2886|1.2280| 0.8775 |0.6468 | 0.7587

However, from the above, samples giving estimates which are p>1 (that is
samples 2,3,5,6,7) are excluded; thus in this case, out of 10 samples by
eiminating (2samples negative and 5 samples p>1) that is 7samples as
giving un acceptable estimates only 3 samples give acceptable estimates . For

this set, the parameter estimates and the statistics namely mean, s.d, etc, are
given below:
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Table 2: Acceptable estimates of parameters

S.No. 8 9 10

a |4.2338|4.5943| 3.6023

p |0-2031|0.5140| 0.9479

p |0.8775| 0.6468| 0.7587

Table 3: Acceptable estimates of parameters of their statistics

Mean sd min max rms

a |4.1435]0.5021| 3.6023| 4.5943| 0.94

b 0.5550 | 0.3741| 0.2031| 0.9479| 2.46

p |0.7610| 0.1153| 0.6468| 0.8775| 0.56

In short, though 10 samples were generated from the mixture only 3 gave
acceptable estimates, the remaining 7 gives unacceptable estimates.

The aboveillustration refers to the case when p isto be estimated.
When p isknown:
We now illustrate the case when p isknown.

Here also, we have taken n=10 samples, each of size m=5 in the same way as
in the case where ‘ p’ is also to be estimated. Now mixture distribution ‘ x” is
constructed as follows:

If

r(i i) < px(i 1) =%, );
else,

X(1,§)=%(1,]);

In this case, only two raw moments and their functions of moments and their
ratios are used namely.
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Table 4: 1% and 2™ raw moments and their functions and ratios.
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SNo. 1 2 3 4 5 6 7 8 9 10
rn.l,. 1.122 2.030 2.208 2.616 1.357 1.806 1.996 1.869 1576 | 1.480
rné 1.639 4.411 5.069 9.401 2.636 3.346 4.724 4.334 5.002 | 3.095
S =M
Y 0.123 -3.250 -4.302 0.817 0.544 -3.008 -1.767 | -0.984 5.066 | 0.513
—(2m )
SA.( p* Q) -0.769 -20.315 | -26.889 5.110 3401 |-18.805 | -11.049 | -6.153 | 31.664 | 3.207
From the above set samples giving negative values namely 1,2,3,6,7,8 are

omitted and the remaining values are substituted in the given formul ae.

In this case, out of 10 samples, by eliminating 6 samples as giving un
acceptable estimates. For this set the parameters are estimated and statistics
namely mean, s.d, etc are given below:

Table5: Acceptable estimates of parameters

a= |7.0417 | 41894 | 7.6548 | 4.3946
b= | 47810 | 2.3453| 2.0278 | 2.6036
Table 6: Estimates of parameters of their statistics
mean std min max | r.m.s
a 5.82 1.78 4.18 7.65 1.74
b 2.93 125 2.02 1.74 1.08
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Table-1(a): Estimated parameters of Mixture of Two Rectangular distributions

with parameters a, b, p, q, 4 setsof parameter values (a,b);
53); (6,3; (7,3); (10,3) with p=0.2:0.1:0.5, sample size
m=>50, number of samples n=500, proportion of acceptable
estimatesof a, b, p.

Da5 Mean | Std [Min [Max Rms [Men |std [Min Max [Rms [Mean |std | Min  Max |[Rms a:;frﬂt;bef
02 | 510 | 0.76 |30 | 8.46 |05 | 1.33 087 [0.06 | 37 |L.88 | 050 [016 | 0.08 099 034 | 44%
03 | 531 | 068 [353 [1L70 |058 | 155 083 [00L 373 |L66 | 050 [0.43 0 (081 024 | 45%
04 | 525 | 053 [2.85 | 741 [073 | 153 [0.76 [0.09 362 |L65 | 055 [o.1L | 0.04 094 [0.19 | 47%
05 | 532 | 065 [392 [1L85 |0.68 | 159 [0.76 [0.03 326 |159 | 059 [0l | 0.06 087 015 | 46%

2)a=6
02 | 606 | 067 [3.44 | 751 [048 | 1.87 081 [0.09 389 |1.38 | 038 [042 | 0.04 089 021 | 47%
03 | 604 | 048 [407 | 741 [045 | 195 084 019 392 |134 | 042 [oaL | 01 |087 [017 | 50%
04 | 609 | 044 [398 | 7.07 [047 | 244 087 [o0L 444 [121 | 048 [o12 | 004 |0.78 [015 | 55%
05 | 6.2 | 045 [488 | 7.75 |0.66 | 240 [0.89 [0.35 467 |1.26 | 054 [043 | 0.02 099 [0.14 | 61%

3)a=7
02 | 693 | 066 [446 | 8.25 |048 | 218 [0.87 [0.06 437 [031 | 012 [00L | 001 | 06 016 | 56%
03 | 7 [o48s 458 | 8.06 [049 | 249 [0.86 [0.33 468 [0.99 | 036 [0.12 | 0.0L |086 [0.14 | 64%
04 | 693 | 049 |45 | 830 |044 | 259 088 [060 517 |0.97 | 042 [013 [0.0006 |087 [0.14 | 68%
05 | 695 | 044 [5.35 | 8.13 |045 | 256 [0.89 [0.65 486 [0.98 | 052 [044 | 0.04 095 [0.14 | 67%
4)a=10
02 | 97 | 088 |64 1142 [092 | 290 088 [o12 598 [0.89 | 022 [0.09 0 |05 009 | 78%
03 | 9.77 | 071 |66 1114 [075 | 307 084 [L50 581 [0.84 | 030 [oL | 001 |058 011 | 89%
04 |9.77 | 062 6.82 1130 [0.66 | 3.12 093 [0.86 |656 [0.94 | 039 oL 0 075 joaL | 93%
05 | 9.77 | 057 [7.35 [11.09 |06 | 3.12 099 [L12 645 |L00 | 049 [013 | 0.0 099 [0.13 | 94%

Table 2(a): A mixture of two Rectangular distributions with estimated

parameters aand b,when p is known, 4 sets of parameter
values (a,b); 1) (5,3); 2) (6,3); 3) (7,3); 4) (10,3), sample size
m=>50, number of samples n=500, proportion of acceptable
estimatesof a, b, p.

lacceptable

Mean | Std [Min |Max [Rms [Mean [Std [Min [Max |Rms |[Mean | Std Min [Max |Rms estimates

510 ]0.76 (301 [816 |0.75 |1.33 |0.87 |0.06 |37 188 [050 [0.16 | 0.03 ]0.99 |0.34 44%

531 |0.68 [3.53 |11.70 |0.58 155 [0.83 [0.01 [3.73 |1.66 |0.50 [0.13 0 081 |0.24 45%

525 053 [285 |741 |0.73 |153 |0.76 |0.09 [362 [165 |055 |0.11 | 0.04 ]0.94 10.19 47%

532 |0.65 [3.92 ]11.85 |0.68 |159 [0.76 |0.03 [3.26 |1.59 |0.59 0.11 | 0.06 |0.87 [0.15 46%

6.06 | 067 314 | 751 048 | 187 [0.81 [0.09 |3.89 |1.38 | 0.38 012 | 0.04 [0.89 [0.21 | 47%

6.04 | 048 407 | 741 045 [ 195 |0.84 1019 [3.92 [1.34 | 042 011 [ 0.1 |0.87 |0.17 50%

6.09 | 044 398 |7.07 |047 | 214 10.87 [0.01 |444 [1.21 | 048 012 [0.04 |0.78 |0.15 55%

612 | 045 488 | 7.75 |0.66 | 2.10 0.89 |0.35 |4.67 [1.26 | 054 013 [0.02 |0.99 |0.14 61%

693 | 0.66 446 |825 048 | 2.18 |0.87 |0.06 |4.37 [0.31 | 012 |0.01 |0.01 0.6 ]0.16 56%

7 (0488 458 | 8.06 {049 | 249 |0.86 [0.33 |4.68 [0.99 | 036 [0.12 [0.01 |0.86 |0.14 64%

693 | 049 455 |830 [044 | 259 [0.88 [0.60 |5.17 ]0.97 | 0.42 |0.13 |0.0006 [0.87 [0.14 68%

695 | 044 535 | 813 045 | 256 [0.89 [0.65 |4.86 |0.98 | 0.52 |0.14 | 0.04 [0.95 [0.14 67%

9.7 [088 |64 [1142 092 | 290 |0.88 [0.12 598 [0.89 |0.22 [0.09 | O 051 10.09 8%

977 | 071 |66 [11.14 |0.75 |3.07 |0.84 |1.50 |581 [0.84 | 030 [0.11 [0.01 |0.58 |0.11 89%

9.77 | 0.62 682 [11.30 |0.66 | 3.12 0.93 |0.86 [6.56 [0.94 | 0.39 |0.11 0 075 [0.11 93%

9.77 1057 [7.35 [11.09 061 | 312 [0.99 [112 |645 |1.00 | 049 |0.13 | 0.03 [0.99 [0.13 94%
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Table 3(a): Estimated parameters of Mixture of Two Exponential distributions
with parameters a, b, p, g, 4 setsof parameter values (a,b);
D 53; 2(63; 3 (7,3; 4) (10,3), with p=0.20:0.1:0.5,
sample size m=50, number of samples n=500, proportion of
acceptable estimatesof a, b, p.

ace

b=3

|7 ¥

a5 | Men | Sd | Min | Max | Rms | Menn | Sd | Min | Max | Rms | Men | S | Min | Max | Rms Zﬁﬁq"ﬂe

02 | 5% 211 | 237 | 1376 | 231 | 088 059 | 001 | 31 219 | 056 020 | 002 | 099 | 041 | 4%

03 | 623 227 | 267 | 1663 | 258 | 097 072 | 001 | 371 | 215 | 054 019 | 011 | 098 | 031 | 4%

04 | 648 236 | 299 | 1859 | 278 | 102 071 | 002 | 347 | 209 | 056 019 | 008 | 097 | 025 | 41%

05 | 7.05 265 | 288 | 1671 | 334 | 114 081 | 000 | 461 | 202 | 054 021 | 007 099 | 021 | 43%

02 | 662 232 | 273 | 1536 | 240 | 099 080 | 000 | 367 | 215 | 052 020 | 005 | 099 | 038 | 50%
03 | 681 245 | 258 | 1481 | 257 | 117 076 | 001 | 379 | 257 | 052 076 | 000 | 379 | 197 | 4%

04 | 739 249 | 334 | 1847 | 285 | 123 091 | 001 | 485 | 198 | 053 021 | 0003 | 099 | 025 | 3%

05 | 7.93 277 | 356 | 1665 | 337 | 124 095 | 000 | 554 | 200 | 052 02 | 002 | 085 | 02 3%

02 | 714 251 | 256 | 1520 | 251 | 124 095 | 000 | 474 | 200 | 049 021 | 002 | 099 | 036 | 4%

03 | 756 258 | 337 | 1816 | 263 | 141 094 | 001 | 458 | 184 | 05 02 | 004 | 099 | 184 | 41%

04 | 799 258 | 341 | 1911 | 275 | 142 106 | 001 | 521 | 189 | 051 019 | 003 | 099 | 189 | 43%

05 | 884 298 | 401 | 2355 | 350 | 142 106 | 001 | 604 | 190 | 053 019 | 001 099 | 019 | 40%

410
02 | 84 265 | 348 | 2020 | 307 | 174 127 | 001 | 615 | 178 | 045 02 004 099 | 032 | 5%
03 ]9 204 | 388 | 29 | 310 | 19 131 | 001 | 68 | 169 | 049 021 | 001 097 | 029 | 56%

04 | 951 284 | 393 | 1855 | 287 | 209 144 | 001 | 68 | 170 | 051 02 | 003 | 097 | 023 | 49%

05 | 1041 | 346 | 471 | 2952 | 348 | 205 151 | 001 | 769 | 178 | 055 021 | 0001 | 098 | 022 | 4%

Table 4(a): Estimated parameters of Mixture of Two Exponential distributions
with parameters a and bwhen p isknown, 4 setsof parameter values (a,b);

D (573; 2) (6,3); 3 (7,3); 4) (10,3), samplesize m=50, number of samples
n=500, proportion of acceptable estimatesof a, b.

&
1) Mean | Sd Min | Max Rms | Mean | Sd Min | Max | Rms wgeptable
estimates
02 564 139 | 242 | 1373 | 153 | 286 051 | 134 | 457 | 052 100%
03 532 12 289 | 976 124 | 282 054 | 105 | 554 | 057 100%
04 53 108 | 306 | 1036 | 112 | 281 062 | 058 | 517 | 064 100%
05 524 102 | 308 | 1077 | 105 | 278 074 | 028 | 511 | 077 100%
2
02 6.23 173 | 288 | 1640 | 174 | 297 055 | 120 | 519 | 055 100%
03 6 155 | 286 | 1163 | 155 | 296 060 | 090 | 527 | 060 100%
04 6.02 133 | 311 | 1227 | 133 | 301 074 | 012 | 551 | 074 100%
05 6002 | 127 | 344 | 1279 | 127 | 303 085 | 010 | 547 | 085 100%
3
02 675 217 | 301 | 1493 | 218 | 307 058 | 145 | 503 | 058 100%
03 687 182 | 32 1329 | 182 | 311 075 | 079 | 547 | 076 100%
04 664 169 | 349 | 128 | 173 | 322 087 | 033 | 569 | 090 100%
05 6.77 145 | 374 | 1326 | 147 | 316 105 | 001 | 612 | 106 100%
4
02 9 343 | 326 | 21.82 | 357 | 324 069 | 088 | 554 | 073 100%
03 904 278 | 35 1879 | 294 | 334 088 | 091 | 750 | 094 100%
04 919 25 39 17.33 | 263 | 339 112 | 078 | 672 | 119 100%
05 953 207 | 449 | 1757 | 212 | 351 137 | 010 | 873 | 146 100%




Figure 1(a), 2{a) m=50,n=500 Estirnates for parameters (Rectangular Mizture di stribution ‘p’ is not
ketiowm, “p’ i3 known, where b=3 fized)
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Fi_gure 3(a), 4(a) m=50, n=500 Estimates for parameters (Exponential mixture distribution ‘p’
is not known, ‘p” is known, where b=3 fized)

Results of Simulation (Tables & Graphs)
Table 1(a): Gives simulational results for the case of rectangular mixtures with
different combinations of a and p where b isfixed (b=3). For each of size

m=>50, number of samples n=500,were generated and their respective graph
are also presented in Figure 1.1(a).
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Table 2(a): Presents results of simulation for the case where p isknown. Inthe
same way as table 1(a) the only difference being * p* is known.

Tables 3(a) & 4(a): presents the case for exponential mixtures with similar
combinations of a, b and p where a and p are exponential parameters

(with b=3 fixed) a and p taking the values a and 5,6,7,10 and a and
p=0.2to 0.5. Their respective graphs are also presented in figures.

Observationsand Commentsfrom Tables and Graphs
Example: Table-1(a) (Rectangular

It shows when a=5p=0.2 and b=3, the mean value of estimates of
a=510,b=1.33, p=050. As p increases (0.2:0.1:0.5) actua value of
parameters are nearer to its estimated value. And the proportional of acceptable
estimates are found to be 44% to 60%. For the same case where
a=6,p=0.2,b=3, the mean value of estimates of a=6.06, p=0.38,b=1.87.
As ‘ p’ increases parameters a,b, p are better estimated. Smilarly a=7 and
10for p=02,b=3 the edimated vaues of parameters are
a=6.93, p=0.12,b=0.87; a=9.7,p=0.22,b=2.90. Here the estimates of

parameters are quite nearer to its true value, proportional of acceptable estimates
arefound to be 56% to 94%.

These are presented in graph. From this graph one can observe that when the
difference of a and b is small as p increases one f the parameter (larger) is

estimated well, the other b and p are under estimated. When *a” and ‘b’ quite
far away one another as * p’ increases parameters are better estimated.

In general estimated values of  p” are sufficiently nearer to the true value. The

averages being amost equal to the true value expect for the case
a=50b=3 p=0.2where estimate of ‘p’ is 0.5. About the proportion of

samples gives acceptable estimates we find that as * p” increases 0.2 to 0.5

acceptability also increases. Similarly as the difference between a and b
increases proportional of acceptable samples also increases giving aimost 100
percent acceptability when a=10,b=3.

As ‘m’ increases from m=50,100,200, the situation considerably improves;
proportion of rejects gets reduced. With acceptable samples the estimates will be
sufficiently nearer to the true values. When two populations are sufficiently
digtincti.e,, a—b isnot small, the estimates will be generaly better.

Tables 1(a) and 2(a) are the proportion of acceptable in the two cases (1) * p’ is
known (2) ‘p’ is un-known. The proportion of acceptable samples are
considerably high when “ p’ is known, than when * p’ is un-known and the
estimates (aand b) are quite nearer to the true value.
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The above tables are shown in graphs as Fig 1.1(a) shows estimates of *a’ from
the acceptable sets of sample is quite satisfactory giving estimates very nearer to
the true of “a’ irrespective of the proportion * p’. However for ‘b’ which is
aways true value is 3 the estimates will be highly underestimates when a=>5.
As ‘a’ increases (becomes more different from “b’). The corresponding
estimate of ‘b’ become less unsatisfactory and when a=10 they are almost
good becoming even better as “ p’ increases towards 0.5. When ‘a’ is 5
proportion of acceptable estimates are quite low in the range 44% to 51%. As
“a’ increases this proportional of acceptable estimates also increases quite
rapidly, and when a=10 it starts from 80% to 100% as “ p’ increases to 0.5.
When a=5 and 6 the proportion of acceptable estimates itself is quite low and
the estimates of “ p” in this case also are not satisfactory, being high over
estimates for a=5 and for a=6 less unsatisfactory. In case of a=7 and 10
these estimates expect for p=0.2 in other cases the estimates are relatively
satisfactory. However for the case a=10 proportional of acceptable estimatesis
aso high (above 80% ) and estimates of “ p’ are quite nearer to the true values
though they have moderately high s.d.

In fig 2(a) rectangular (* p’ is known): In this case estimates of ‘a’ are quite

satisfactory for a=5, while for other cases they are dightly under estimating.
The degree of under estimating being reduces as * p’ increases from 0.2 to 0.5.

However regarding estimates of ‘b’ there is a very slight under estimation when
a=>5, while for other cases that is a=6,7,10 estimates are dlightly over
estimating.

Fig 3(a) in exponential case: When a=5,6and 7 as ‘ p’ increase to 0.2 to
0.5, the estimates of a and p are dightly over estimated. If a=10, for
p=0.2 the estimate of “a’ is being under estimated, approaching the true value
as “ p’increases to 0.5. When b=3 the estimates of * b’ are under estimated as
‘ p’ increases. From this case (m=50, n=500) the proportional of acceptable
samples are found to be 44% to 60% .

Fig 4(a) in exponential (when “ p’ is known) a=>5and 6for p=0.2 the
estimate of “a’ is being over estimated and “ p’ increases to 0.5the estimates of

“a’ is nearer to its true value. For the corresponding ‘b’ is nearer to its true
value. If a=7 and 10as ‘ p’ increases the estimates of ‘a’ is slightly under

estimated. From this case estimates of ‘b’ are over estimated. Here the
proportional of acceptable samples found to be 100% .

Similarly, generated estimated parameters for various combinations of
parameters (a,b, p), with different sample sizes (m) and different number of

samples (n) for a mixture of two rectangular / exponential distributions of size
mxn.
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As ‘m’ increases (50,100,200) when ‘ p’ is unknown, the proportional of
acceptable samples are found to be 44% to 80%. It is interesting to note that
when * p’ is known for the case of exponentia the samples giving amost 100%

acceptable estimates. While in the rectangular it ranges 75% to 84%
(a=5,b=3) . Inother casesitisaround 75% to 100%.

Hence on the whole this approach does not seem to give useful estimates in the
case of rectangular / exponential these are presented in tables and graphs.

This fact shows the importance of developing acceptable estimates as often
happens from samples which lead to unacceptabl e estimates.

6. CONCLUSIONS

1. Two parameters of a mixture distribution are quite nearer, the proportions of
acceptable estimates are found to be 40% to70%. And things become better
when parameters are relatively far off (differenceislarge enough).

2. For rectangular even among the acceptable estimates, the bigger parameter
is better estimated and the other one is mostly underestimated. About
estimate of ‘p’, not bad in rectangular, except for a=5, b=3; for

exponential caseit is always bad.

3. When p is known, unacceptable estimates are reduced and found

proportiona to acceptable estimates of a and b, and estimated parameter
values are very close to the true value.

When * p’ is known, proportion of acceptable estimates is in nearer to be 75%

and more will be acceptable: and both estimates of a and b will be generaly
good, in rectangular and exponential mixture distributions.
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