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ABSTRACT

This paper considers the problem of estimating parameters of a mixture
distribution (Rectangular/Exponential) using the method of moments, their
functions and ratios mainly by simulation. Estimated the values of parameters, for
the case (1) ‘ p ’ unknown, (2) ‘ p ’ is known and are presented in tables and

graphs. As sample size ‘m’ increases the proportion of acceptable sample
estimates are also increases. However, it is possible that a sample gives estimates
which are not in the acceptable range (negative, complex, 1p  or 0p  ).

1. INTRODUCTION

The present study deals with the problem of estimating parameters in mixture of
two distributions from the same family. In particular, the cases of exponential
and rectangular populations are considered.

Methodology adapted is to find the estimates of parameters by functions of raw
moments as obtained by a sample. These functions are polynomial functions of
raw moments: their ratios turn out to be simple functions of the parameters from
which estimation will be possible. A major problem in this context is that higher
order sample moments have a high variability from sample to sample and their
ratios will be even more fluctuating. Hence, one may expect relatively less
efficiency of estimates obtained; often the estimates may even be outside
acceptable range. Simulation studies are carried out to find how the quality of
‘estimates’ improves with varying sample size. The application of mixture
distributions are very much used in Reliability and many of the Biometric,
Engineering and Social Sciences.

2. A BRIEF REVIEW

Two essentially different approaches can be seen in attempts for estimating the
parameters of the mixture distributions.
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1. Individual values of observations ‘ ix ’ are directly used, for example in
method of moments or maximum likelihood.

2. Cumulative distributions of mixture models are fitted to the empirical
cumulative distribution function from the sample. (Essentially, by least
squares, weighted and / or non linear as the case may be).

In this case the graphical methods using special graph papers like the normal,
log, double log are used to study the possibility of data from mixture of specific
types of distributions. In particular this approach has been attempted by Harding
(1948).

Edward and Flowsky (979), consider the case of mixture of two normal (Log
normal) distributions: A method, the P  versus Q  plot, is developed that is,
more sensitive to the presence of mixtures than more familiar methods. A series
of ad-hoc methods that produce initial guesses for parameter values is also
presented. Two methods of global estimation given initial parameter guesses are
presented and compared. These methods are the maximum likelihood and a least
squares procedure that fits the sample quantiles to the inverse distribution
function of the mixture. The sensitivity of the method to poor choices for initial
guesses is also considered.

Smiley W. Cheng and James C. Fu (1982) considered cumulative distribution
function of mixture of two Weibull distributions. Weighted least squares is
proposed for estimating parameters when data are grouped and censored, Dan
Ling et al. (2009), discusses Nonlinear least square versus graphical methods for
the same case.

The other approach is based on functions of individual sample values like
moments, maximum likelihood function etc. Brief comments on attempts using
this approach are given below:

Rider (1960), considered the problem of mixture of two exponential
distributions. He noted that method of moments gives unacceptable estimates;
however when a b the proposed estimators are consistent. Also, he found

variance of the asymptotic distributions of a and b . He also, finds out that a
chi-square test for single exponential can be misleading; a null hypothesis that
data are from a single exponential often gets accepted, when a chi-square test for
goodness of it is carried out.

Blischke (1962) considers mixture of two binomials with same ‘ n ’ but with
different parameters 1p and 2p and with mixture parameter p and 1q p 
and points out some theoretical anomalies about relative efficacy of estimators.

Tallis and Light (1968) use fractional moments for estimates of parameters, and
compare method of moments with   maximum likelihood method and observes
that maximum likelihood method involves much larger amount of calculation
without increasing in acceptability of estimates of mixed exponential
distributions.
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Maximum likelihood method for the estimation of the parameters of the mixed
normal was first considered for 1 2  by Rao (1948). Hasselblad (1966)
considered the k  component normal mixtures where k is known: here the k
means, k variances and 1k  proportions are to be estimated using maximum
likelihood estimates for single truncated normal populations. A method of
steepest descent which always converged to maximize the likelihood function of
the entire sample is used. Special cases of equal variances and variances
proportional to the square of the mean are also considered.

Day (1969) discusses the method of moments, minimum chi-square and Bayes
estimators. He also points out that they appear greatly inferior to maximum
likelihood in a mixture of two Normal, multivariate, but with unknown
covariance matrices.

Craigmile and Titterington (1977) extend the result of Gupta and Miyawaki
(1978) and deals with 2 and 3 component mixture of Rectangular distributions.
Method of moments and maximum likelihood was discussed.

Hussain and J-Liu derived (2009) L moment estimators of parameters of
mixture of two rectangular distributions. They considered possible cases
namely, (1) neither over lap or gap,   (2) with over lap and with gap, they note
that comparison of the two usual maximum likelihood, and method of moments
and modified maximum likelihood method. The L moment estimates have less
bias and more efficient in many cases.

It is pointed out that, most of the above methods require large samples.

3. METHODOLOGY OF THE PRESENT APPROACH

The Case of Rectangular Mixture

Let the two rectangular distributions be in the ranges as 0 a and 0 b
and mixture parameter be given as p : (1 p ), where 0 1p  , the observation
‘ x ’ come from either the 1st  or 2nd  population with probabilities p and

1q p  .

The k  th  raw moment is given by

'( )
1

k kpa qb
m k

k





(1)

Then, the raw moments are

12 'pa qb m  (1a)

2 2
23 'pa qb m  (1b)

3 3
34 'pa qb m  (1c)

4 4
45 'pa qb m  (1d)
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Using the above functions of moments one can get the following relationship.

   2 2
2 13 ' 2 's m m pq a b    (2a)

     2
1 3 2 1(4 ') 6 ' 's m m m pq a b a b     (2b)

     2 2 2
2 4 3 1(3 ') 8 ' 's m m m pq a b a b ab      (2c)

One can estimate the simple functions a b and a b of the parameters by
taking the ratios of these functions as given below:

  1s
a b

s
  (3a)

 
2

2 1
4 3

s s
a b

s s
         
   

(3b)

Solving (3a) and (3b) using the observed (that is sample) moments, one gets

2
2 2 1

4 3
ˆ

2

s s s

s s s
a
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From (4a)
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3.1 The case of Exponential Distribution

Let the two exponential distributions be with the parameters a and b with
mixture parameter p and 1q p  ; that is, the observation ‘ ix ’ comes from

population with density function
1 x

ae a
 or

1 x

be a
 with probabilities p and

1q p  .

The four corresponding moments are theoretically

'( )
!

k kpa qb
m k

k


 (5)

Then the raw moments are
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12 'pa qb m  (5a)

 2 2
22 'pa qb m  (5b)

 3 3
36 'pa qb m  (5b)

 4 4
424 'pa qb m  (5d)

Using the above functions of moments one can get the following relationship.

   2 2
2 1' 2 ' 2s m m pq a b    (6a)

     2
1 3 2 1' 3 ' ' 6s m m m pq a b a b     (6b)

     2 2 2
2 4 3 1' 4 ' ' 24s m m m pq a b a b ab      (6c)

From the above functions it follows that
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Solving   (7a) and (7b)
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In each of the cases, two sub-cases namely (1) when p is unknown and (2) when
p is known (not to be estimated) are considered, with obvious modifications in
the estimators. However, the present approach though often gives unacceptable
estimates, can be modified by selective sub sampling, to get acceptable and
useful estimates.
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4. METHODOLOGY OF SIMULATION IN THE PRESENT STUDY

Below is given the procedure to generate mixture of two rectangular
distributions; the same with obvious modifications is used to generate the
exponential mixtures.

Consider a particular mixture, with parameters a and b and mixture parameter p

and 1q p  ; for a given sample size ‘ m ’, n samples are generated from each

of the rectangular distributions 1x and 2x respectively. Let ‘ r ’ be a random
matrix of size m n from uniform 0 1 . The m n matrix ( , )x x i j , is
constructed as follows:

If      1, , , , ;r i j p x i j x i j  else,      1, , , ,r i j p x i j x i j  .

This matrix ‘ x ’ has its ‘n’ columns as independent samples from the desired
mixture distribution. Using these samples along with the formulae given above
(2a, 2b, 2c) we get estimates of , ,a b p . However, of these estimates quite a few
turned out to be unacceptable, of being either negative or complex or 1p  or

0p  . Excluding these unacceptable values the mean, s.d, min, max etc., of
these retained estimates are computed and reported. In this filtering, even if one
of the estimates of parameters is unacceptable the other estimates are excluded
from consideration. The proportions of acceptable estimates are recorded in
tables.

In such cases, samples which give an unacceptable estimates are obtained it is
proposed to go for some sort of sub sampling (like bootstrap method), and take a
weighted average estimates for the same.

4.1 The Procedure Followed as given above is Illustrated Below

Here we have taken 10n  samples, each of size 5m  of two rectangular
distributions 1x and 2x with range 0 ( 5)a  and 0 ( 3)b  of size m n .
From these samples a mixture sample 0.2p  p=0.2 is generated as follows:
Another   random matrix ‘ r ’ from uniform 0 1 of size m n is generated.
Now mixture distribution ‘x’ is constructed as follows:

If

     1, , , , ;r i j p x i j x i j 

else,

     1, , , , ;r i j p x i j x i j 

For illustration Let us consider:
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1x = Simulated Rectangular distribution with parameter ‘ a ’, ‘ p ’ of size 5 10

4.7506 3.8105 3.0772 2.0285 0.2895 1.0138 0.0764 2.0932 4.1906 2.5141

1.1557 2.2823 3.9597 4.6773 1.7643 0.9936 3.7339 4.2311 0.0982 3.5474

3.0342 0.0925 4.6091 4.5845 4.0658 3.0190 2.2255 2.6258 3.4064 2.1445

2.4299 4.1070 3.6910 2.0514 0.0493 1.3609 4.6591 1.0132 1.8974 1.5231

4.4565 2.2235 0.8813 4.4682 0.6945 0.9941 2.3300 3.3607 4.1590 0.9483

2x = Simulated  Rectangular distribution with parameter ‘ b ’ , ‘ q ’ of size 5 10

0.5803 2.0937 1.487 1.9807 2.1813 2.1082 2.3845 2.9392 0.4096 1.9843

2.0467 1.1351 2.6993 1.0259 0.9279 1.6397 2.8705 0.8143 0.0353 0.8532

0.9083 2.5800 2.4649 0.8692 2.5155 1.3346 1.5678 0.7570 2.6817 1.4077

1.6250 2.5610 1.9347 1.0236 1.7042 2.0837 2.6404 2.6272 0.5974 0.1943

0.4526 1.7807 2.4539 1.6022 1.1112 1.8639 0.5189 2.2119 0.8962 2.9650

r = Random matrix of size 5 10

0.5828 0.2259 0.2091 0.5678 0.4154 0.9708 0.2140 0.4120 0.6833 0.2071

0.4235 0.5798 0.3798 0.7942 0.3050 0.9901 0.6435 0.7446 0.2126 0.6072

0.5155 0.7604 0.7833 0.0592 0.8744 0.7889 0.3200 0.2679 0.8392 0.6299

0.3340 0.5298 0.6808 0.6029 0.0150 0.4387 0.9601 0.4399 0.6288 0.3705

0.4329 0.6405 0.4611 0.0503 0.7680 0.4983 0.7266 0.9334 0.1338 0.5751

x = Simulated Mixture distribution with parameters ‘ a ’ b ’ ,‘ p ’

0.5803 2.0937 1.4897 1.9807 2.1813 2.1082 2.3845 2.939 0.4096 1.9843

2.0467 1.1351 2.6993 1.0259 0.9279 1.6397 2.8705 0.814 0.0353 0.8532

0.9083 2.5800 2.4649 4.5845 2.5155 1.3346 1.5678 0.757 2.681 1.4077

1.6250 2.5610 1.9347 1.0236 0.0493 2.0837 2.6404 2.6272 0.5974 0.1943

0.4526 1.7807 2.4539 4.4682 1.1112 1.8639 0.5189 2.2119 0.8962 2.9650

Now, the matrix  has its columns as samples from the desired mixture.
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5. NUMERICAL ILLUSTRATION

(1,1) 0.58 0.2r   ; 2(1,1) (2,2) 0.5803x x  ;

(1,2) 0.22 0.2x   , 2(1,2) (1,2) 2.09x x  ;

(4,5) 0.01 0.2x   ; 1(4,5) (4,5) 0.04x x  ;

(5,4) 0.01 0.2x   ; 1(5,4) (5,4) 4.4654x x  ;

The first 4 sample moments for each of the 10 samples are computed. Using
these functions of raw moments and their ratios as stated earlier, these are used
to estimate the parameters of ‘ a ’, ‘ b ’, ‘ p ’ respectively. The first 4 sample

raw moments 1 2 3 4( , , , )m m m m    functions and their ratios are:

S.No. 1 2 3 4 5 6 7 8 9 10

1m  0.1784 0.2227 0.1883 0.1614 0.3027 0.4077 0.0834 0.2567 0.2098 0.2936

2m  0.9411 1.8804 1.1157 0.8586 2.3515 4.4968 0.6079 1.8564 1.3619 2.4757

3m  1.0630 3.3676 1.5623 1.0503 3.7639 10.6427 1.0352 3.0263 1.9640 4.3480

4m  1.2408 6.1380 2.4413 1.3803 6.2178 26.6259 1.7872 5.4479 2.9888 7.7547

Functional values are:

S.No. 1 2 3 4 5 6 7 8 9 10

23s m 2
1(2 )m - 0.123 -3.250 -4.302 0.817 0.544 -3.008 -1.767 -0.984 5.066 0.513

1 24s m 2
2 16m m  0.080 -13.530 -19.197 8.795 1.304 -10.916 -8.907 -4.368 25.879 2.335

2 45s m 3 18m m  0.386 -44.988 -66.707 39.53 3.134 -30.463 35.472 -18.537 120.234 8.873

1 /w s s -0.654 4.162 4.462 10.75 2.397 3.628 5.0383 4.436 5.108 4.550

2
4

2
1

4

3

s
w

s

s

s

   
 

   
 

-13.840 3.380 2.287 -153.71 5.809 1.010 4.097 16.246 16.649 7.046

4( )sqrt w 1.615 2.446 2.242 1.843 2.311 3.537 2.161 2.596 2.124 2.444
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From the above set, the sample numbers 1 and 4 are eliminated, Since w and,

 24W a b  should not be negative and the remaining values are substituted in

the given formula.

2
2 111

4 3

2

s s

s s s
a

           
     

and

2
1sb a
s
   
 

 
(4a)

From (4a)

12m b
p

a b

  
    


 

Then  using 8 samples we have the following estimates as:

Table 1: Estimates of parameters of mixture distribution

S.No. 2 3 5 6 7 8 9 10

a
 3.0007 2.9872 2.4036 2.3167 3.5314 4.2338 4.5943 3.6023

b
 1.1620 1.4748 -0.0067 1.3114 1.5072 0.2031 0.5140 0.9479

p


1.5762 1.9454 1.1288 2.2886 1.2280 0.8775 0.6468 0.7587

However, from the above, samples giving estimates which are 1p  (that is
samples 2,3,5,6,7) are excluded; thus in this case, out of 10 samples by
eliminating ( 2 samples negative and 5 samples 1p  ) that is 7 samples as
giving un acceptable estimates only 3 samples give acceptable estimates . For
this set, the parameter estimates and the statistics namely mean, s.d, etc, are
given below:
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Table 2: Acceptable estimates of parameters

S.No. 8 9 10

a
 4.2338 4.5943 3.6023

b
 0.2031 0.5140 0.9479

p
 0.8775 0.6468 0.7587

Table 3: Acceptable estimates of parameters of their statistics

Mean s.d min max rms

a
 4.1435 0.5021 3.6023 4.5943 0.94

b
 0.5550 0.3741 0.2031 0.9479 2.46

p
 0.7610 0.1153 0.6468 0.8775 0.56

In short, though 10 samples were generated from the mixture only 3 gave
acceptable estimates, the remaining 7 gives unacceptable estimates.

The above illustration refers to the case when p is to be estimated.

When p is known:

We now illustrate the case when p is known.

Here also, we have taken 10n  samples, each of size 5m  in the same way as
in the case where ‘ p ’ is also to be estimated. Now mixture distribution ‘ x ’ is
constructed as follows:

If

     1, , , , ;r i j p x i j x i j 

else,

   2, , ;x i j x i j

In this case, only two raw moments and their functions of moments and their
ratios are used namely.
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Table 4: 1st and 2nd raw moments and their functions and ratios.

S.No. 1 2 3 4 5 6 7 8 9 10

1m 1.122 2.030 2.208 2.616 1.357 1.806 1.996 1.869 1.576 1.480

2m 1.639 4.411 5.069 9.401 2.636 3.346 4.724 4.334 5.002 3.095

4 2

2
1(2 )

s m

m 




0.123 -3.250 -4.302 0.817 0.544 -3.008 -1.767 -0.984 5.066 0.513

4 .( * )s p q -0.769 -20.315 -26.889 5.110 3.401 -18.805 -11.049 -6.153 31.664 3.207

From the above set samples giving negative values namely 1,2,3,6,7,8 are
omitted and the remaining values are substituted in the given formulae.

4
12

s
a m q

pq
 

;

1(2 )m pa
b

q

 




In this case, out of 10 samples, by eliminating 6 samples as giving un
acceptable estimates. For this set the parameters are estimated and statistics
namely mean, s.d, etc are given below:

Table 5: Acceptable estimates of parameters

a  7.0417 4.1894 7.6548 4.3946

b 


4.7810 2.3453 2.0278 2.6036

Table 6: Estimates of parameters of their statistics

mean std min max r. m. s

a


5.82 1.78 4.18 7.65 1.74

b


2.93 1.25 2.02 1.74 1.08
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Table-1(a): Estimated parameters of Mixture of Two Rectangular  distributions
with parameters a , b , p , q , 4 sets of  parameter values ( , )a b ;
(5,3) ; (6,3) ; (7,3) ; (10,3) with 0.2 : 0.1: 0.5p  , sample size

50m  , number of samples 500n  , proportion of acceptable
estimates of a , b , p .

̂
1)a=5 Mean Std Min Max Rms Mean Std Min Max Rms Mean Std Min Max Rms

acceptable
estimates

0.2 5.10 0.76 3.01 8.16 0.75 1.33 0.87 0.06 3.7 1.88 0.50 0.16 0.03 0.99 0.34 44%
0.3 5.31 0.68 3.53 11.70 0.58 1.55 0.83 0.01 3.73 1.66 0.50 0.13 0 0.81 0.24 45%
0.4 5.25 0.53 2.85 7.41 0.73 1.53 0.76 0.09 3.62 1.65 0.55 0.11 0.04 0.94 0.19 47%
0.5 5.32 0.65 3.92 11.85 0.68 1.59 0.76 0.03 3.26 1.59 0.59 0.11 0.06 0.87 0.15 46%

2)a=6
0.2 6.06 0.67 3.14 7.51 0.48 1.87 0.81 0.09 3.89 1.38 0.38 0.12 0.04 0.89 0.21 47%
0.3 6.04 0.48 4.07 7.41 0.45 1.95 0.84 0.19 3.92 1.34 0.42 0.11 0.1 0.87 0.17 50%
0.4 6.09 0.44 3.98 7.07 0.47 2.14 0.87 0.01 4.44 1.21 0.48 0.12 0.04 0.78 0.15 55%
0.5 6.12 0.45 4.88 7.75 0.66 2.10 0.89 0.35 4.67 1.26 0.54 0.13 0.02 0.99 0.14 61%

3)a=7
0.2 6.93 0.66 4.46 8.25 0.48 2.18 0.87 0.06 4.37 0.31 0.12 0.01 0.01 0.6 0.16 56%
0.3 7 0.488 4.58 8.06 0.49 2.49 0.86 0.33 4.68 0.99 0.36 0.12 0.01 0.86 0.14 64%
0.4 6.93 0.49 4.55 8.30 0.44 2.59 0.88 0.60 5.17 0.97 0.42 0.13 0.0006 0.87 0.14 68%
0.5 6.95 0.44 5.35 8.13 0.45 2.56 0.89 0.65 4.86 0.98 0.52 0.14 0.04 0.95 0.14 67%

4)a=10
0.2 9.7 0.88 6.4 11.42 0.92 2.90 0.88 0.12 5.98 0.89 0.22 0.09 0 0.51 0.09 78%
0.3 9.77 0.71 6.6 11.14 0.75 3.07 0.84 1.50 5.81 0.84 0.30 0.11 0.01 0.58 0.11 89%
0.4 9.77 0.62 6.82 11.30 0.66 3.12 0.93 0.86 6.56 0.94 0.39 0.11 0 0.75 0.11 93%
0.5 9.77 0.57 7.35 11.09 0.61 3.12 0.99 1.12 6.45 1.00 0.49 0.13 0.03 0.99 0.13 94%

Table 2(a): A mixture of two Rectangular distributions with estimated
parameters a and b ,when p is known, 4 sets of  parameter
values ( , )a b ; 1) (5,3) ; 2) (6,3) ; 3) (7,3) ; 4) (10,3) , sample size

50m  , number of   samples 500n  , proportion  of  acceptable
estimates of a , b , p .

̂
1)a=5 Mean Std Min Max Rms Mean Std Min Max Rms Mean Std Min Max Rms

acceptable
estimates

0.2 5.10 0.76 3.01 8.16 0.75 1.33 0.87 0.06 3.7 1.88 0.50 0.16 0.03 0.99 0.34 44%
0.3 5.31 0.68 3.53 11.70 0.58 1.55 0.83 0.01 3.73 1.66 0.50 0.13 0 0.81 0.24 45%
0.4 5.25 0.53 2.85 7.41 0.73 1.53 0.76 0.09 3.62 1.65 0.55 0.11 0.04 0.94 0.19 47%
0.5 5.32 0.65 3.92 11.85 0.68 1.59 0.76 0.03 3.26 1.59 0.59 0.11 0.06 0.87 0.15 46%

2)a=6
0.2 6.06 0.67 3.14 7.51 0.48 1.87 0.81 0.09 3.89 1.38 0.38 0.12 0.04 0.89 0.21 47%
0.3 6.04 0.48 4.07 7.41 0.45 1.95 0.84 0.19 3.92 1.34 0.42 0.11 0.1 0.87 0.17 50%
0.4 6.09 0.44 3.98 7.07 0.47 2.14 0.87 0.01 4.44 1.21 0.48 0.12 0.04 0.78 0.15 55%
0.5 6.12 0.45 4.88 7.75 0.66 2.10 0.89 0.35 4.67 1.26 0.54 0.13 0.02 0.99 0.14 61%

3)a=7
0.2 6.93 0.66 4.46 8.25 0.48 2.18 0.87 0.06 4.37 0.31 0.12 0.01 0.01 0.6 0.16 56%
0.3 7 0.488 4.58 8.06 0.49 2.49 0.86 0.33 4.68 0.99 0.36 0.12 0.01 0.86 0.14 64%
0.4 6.93 0.49 4.55 8.30 0.44 2.59 0.88 0.60 5.17 0.97 0.42 0.13 0.0006 0.87 0.14 68%
0.5 6.95 0.44 5.35 8.13 0.45 2.56 0.89 0.65 4.86 0.98 0.52 0.14 0.04 0.95 0.14 67%

4)a=10
0.2 9.7 0.88 6.4 11.42 0.92 2.90 0.88 0.12 5.98 0.89 0.22 0.09 0 0.51 0.09 78%
0.3 9.77 0.71 6.6 11.14 0.75 3.07 0.84 1.50 5.81 0.84 0.30 0.11 0.01 0.58 0.11 89%
0.4 9.77 0.62 6.82 11.30 0.66 3.12 0.93 0.86 6.56 0.94 0.39 0.11 0 0.75 0.11 93%
0.5 9.77 0.57 7.35 11.09 0.61 3.12 0.99 1.12 6.45 1.00 0.49 0.13 0.03 0.99 0.13 94%
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Table 3(a): Estimated parameters of Mixture of Two Exponential distributions
with parameters a , b , p , q , 4 sets of  parameter values ( , )a b ;
1) (5,3) ; 2) (6,3) ; 3) (7,3) ; 4) (10,3) , with 0.20 : 0.1: 0.5p  ,
sample size 50m  , number of   samples 500n  , proportion  of
acceptable  estimates of a , b , p .

a b=3 b p
1)a=5 Mean Std Min Max Rms Mean Std Min Max Rms Mean Std Min Max Rms

acceptable
estimates

0.2 5.95 2.11 2.37 13.76 2.31 0.88 0.59 0.01 3.1 2.19 0.56 0.20 0.02 0.99 0.41 44%
0.3 6.23 2.27 2.67 16.63 2.58 0.97 0.72 0.01 3.71 2.15 0.54 0.19 0.11 0.98 0.31 44%
0.4 6.48 2.36 2.99 18.59 2.78 1.02 0.71 0.02 3.47 2.09 0.56 0.19 0.08 0.97 0.25 41%
0.5 7.05 2.65 2.88 16.71 3.34 1.14 0.81 0.00 4.61 2.02 0.54 0.21 0.07 0.99 0.21 43%

2)a=6
0.2 6.62 2.32 2.73 15.36 2.40 0.99 0.80 0.00 3.67 2.15 0.52 0.20 0.05 0.99 0.38 50%
0.3 6.81 2.45 2.58 14.81 2.57 1.17 0.76 0.01 3.79 2.57 0.52 0.76 0.00 3.79 1.97 47%
0.4 7.39 2.49 3.34 18.47 2.85 1.23 0.91 0.01 4.85 1.98 0.53 0.21 0.003 0.99 0.25 39%
0.5 7.93 2.77 3.56 16.65 3.37 1.24 0.95 0.00 5.54 2.00 0.52 0.2 0.02 0.95 0.2 39%

3)a=7
0.2 7.14 2.51 2.56 15.20 2.51 1.24 0.95 0.00 4.74 2.00 0.49 0.21 0.02 0.99 0.36 44%
0.3 7.56 2.58 3.37 18.16 2.63 1.41 0.94 0.01 4.58 1.84 0.5 0.2 0.04 0.99 1.84 41%
0.4 7.99 2.58 3.41 19.11 2.75 1.42 1.06 0.01 5.21 1.89 0.51 0.19 0.03 0.99 1.89 43%
0.5 8.84 2.98 4.01 23.55 3.50 1.42 1.06 0.01 6.04 1.90 0.53 0.19 0.01 0.99 0.19 40%

4)a=10
0.2 8.44 2.65 3.48 20.20 3.07 1.74 1.27 0.01 6.15 1.78 0.45 0.2 0.04 0.99 0.32 59%
0.3 9 2.94 3.88 22.92 3.10 1.93 1.31 0.01 6.88 1.69 0.49 0.21 0.01 0.97 0.29 56%
0.4 9.51 2.84 3.93 18.55 2.87 2.09 1.44 0.01 6.82 1.70 0.51 0.2 0.03 0.97 0.23 49%
0.5 10.41 3.46 4.71 29.52 3.48 2.05 1.51 0.01 7.69 1.78 0.55 0.21 0.001 0.98 0.22 47%

Table 4(a): Estimated parameters of Mixture of  Two Exponential distributions
with parameters a and b when p is known, 4 sets of  parameter values ( , )a b ;
1) (5,3) ; 2) (6,3) ; 3) (7,3) ; 4) (10,3) , sample size 50m  , number of  samples

500n  , proportion  of  acceptable  estimates of a , b .

1) Mean Std Min Max Rms Mean Std Min Max Rms
acceptable
estimates

0.2 5.64 1.39 2.42 13.73 1.53 2.86 0.51 1.34 4.57 0.52 100%
0.3 5.32 1.2 2.89 9.76 1.24 2.82 0.54 1.05 5.54 0.57 100%
0.4 5.3 1.08 3.06 10.36 1.12 2.81 0.62 0.58 5.17 0.64 100%
0.5 5.24 1.02 3.08 10.77 1.05 2.78 0.74 0.28 5.11 0.77 100%

2)
0.2 6.23 1.73 2.88 16.40 1.74 2.97 0.55 1.20 5.19 0.55 100%
0.3 6 1.55 2.86 11.63 1.55 2.96 0.60 0.90 5.27 0.60 100%
0.4 6.02 1.33 3.11 12.27 1.33 3.01 0.74 0.12 5.51 0.74 100%
0.5 6.002 1.27 3.44 12.79 1.27 3.03 0.85 0.10 5.47 0.85 100%

3)
0.2 6.75 2.17 3.01 14.93 2.18 3.07 0.58 1.45 5.03 0.58 100%
0.3 6.87 1.82 3.2 13.29 1.82 3.11 0.75 0.79 5.47 0.76 100%
0.4 6.64 1.69 3.49 12.85 1.73 3.22 0.87 0.33 5.69 0.90 100%
0.5 6.77 1.45 3.74 13.26 1.47 3.16 1.05 0.01 6.12 1.06 100%

4)
0.2 9 3.43 3.26 21.82 3.57 3.24 0.69 0.88 5.54 0.73 100%
0.3 9.04 2.78 3.5 18.79 2.94 3.34 0.88 0.91 7.50 0.94 100%
0.4 9.19 2.5 3.9 17.33 2.63 3.39 1.12 0.78 6.72 1.19 100%
0.5 9.53 2.07 4.49 17.57 2.12 3.51 1.37 0.10 8.73 1.46 100%
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Results of Simulation (Tables & Graphs)

Table 1(a): Gives simulational results for the case of rectangular mixtures with
different combinations of a and p where b is fixed ( 3)b  . For each of size

50m  , number of  samples 500n  ,were generated and their respective graph
are also presented in Figure 1.1(a).
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Table 2(a): Presents results of simulation for the case where p is known. In the
same way as table 1(a) the only difference being ‘ p ’ is known.

Tables 3(a) & 4(a): presents the case for exponential mixtures with similar
combinations of a , b and p where a and p are exponential  parameters
(with 3b  fixed) a and p taking the values a and 5,6,7,10 and a and

0.2p  to 0.5 . Their respective graphs are also presented in figures.

Observations and Comments from Tables and Graphs

Example: Table -1(a) (Rectangular

It shows when 5, 0.2a p  and 3b  , the mean value of estimates of
5.10, 1.33a b  , 0.50p  . As p increases (0.2 : 0.1: 0.5) actual value of

parameters are nearer to its estimated value.  And the proportional of acceptable
estimates are found to be 44% to 60% . For the same case where

6, 0.2, 3a p b   , the mean value of estimates of 6.06, 0.38, 1.87a p b   .
As ‘ p ’ increases parameters , ,a b p are better estimated. Similarly 7a  and
10 for 0.2, 3p b  the estimated values of parameters are

6.93, 0.12, 0.87a p b   ; 9.7, 0.22, 2.90a p b   . Here the estimates of
parameters are quite nearer to its true value, proportional of acceptable estimates
are found to be 56% to 94% .

These are presented in graph. From this graph one can observe that when the
difference of a and b is small as p increases one f the parameter (larger) is
estimated well, the other b and p are under estimated. When ‘ a ’ and ‘ b ’ quite
far away one another as ‘ p ’ increases parameters are better estimated.

In general estimated values of ‘ p ’ are sufficiently nearer to the true value. The
averages being almost equal to the true value expect for the case

5, 3, 0.2a b p   where estimate of ‘ p ’ is 0.5 . About the proportion of
samples gives acceptable estimates we find that as ‘ p ’ increases 0.2 to 0.5
acceptability also increases. Similarly as the difference between a and b
increases proportional of acceptable samples also increases giving almost 100
percent acceptability when 10, 3a b  .

As ‘ m ’ increases from 50,100,200m  , the situation considerably improves;
proportion of rejects gets reduced. With acceptable samples the estimates will be
sufficiently nearer to the true values. When two populations are sufficiently
distinct i.e., a b is not small, the estimates will be generally better.

Tables 1(a) and 2(a) are the proportion of acceptable in the two cases (1) ‘ p ’ is
known (2) ‘ p ’ is un-known. The proportion of acceptable samples are
considerably high when ‘ p ’ is known, than when ‘ p ’ is un-known and the
estimates ( a and b ) are quite nearer to the true value.
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The above tables are shown in graphs as Fig 1.1(a) shows estimates of ‘ a ’ from
the acceptable sets of sample is quite satisfactory giving estimates very nearer to
the true of ‘ a ’ irrespective of the proportion ‘ p ’. However for ‘ b ’ which is
always true value is 3 the estimates will be highly underestimates when 5a  .
As ‘ a ’ increases (becomes more different from ‘ b ’). The corresponding
estimate of ‘ b ’ become less unsatisfactory and when 10a  they are almost
good becoming even better as ‘ p ’ increases towards 0.5 . When ‘ a ’ is 5
proportion of acceptable estimates are quite low in the range 44% to 51% . As
‘ a ’ increases this proportional of acceptable estimates also increases quite
rapidly, and when 10a  it starts from 80% to 100% as ‘ p ’ increases to 0.5 .
When 5a  and 6 the proportion of acceptable estimates itself is quite low and
the estimates of ‘ p ’ in this case also are not satisfactory, being high over
estimates for 5a  and for 6a  less unsatisfactory. In case of 7a  and 10
these estimates expect for 0.2p  in other cases the estimates are relatively
satisfactory. However for the case 10a  proportional of acceptable estimates is
also high (above 80% ) and estimates of ‘ p ’ are quite nearer to the true values
though they have moderately high s.d.

In fig 2(a) rectangular (‘ p ’ is known): In this case estimates of ‘ a ’ are quite
satisfactory for 5a  , while for other cases they are slightly under estimating.
The degree of under estimating being reduces as ‘ p ’ increases from 0.2 to 0.5 .
However regarding estimates of ‘ b ’ there is a very slight under estimation when

5a  , while for other cases that is 6,7,10a  estimates are slightly over
estimating.

Fig 3(a) in exponential case: When 5,6a  and 7 as ‘ p ’ increase to 0.2 to
0.5 , the estimates of a and p are slightly over estimated. If 10a  , for

0.2p  the estimate of ‘ a ’ is being under estimated, approaching the true value
as ‘ p ’ increases to 0.5 . When 3b  the estimates of ‘ b ’ are under estimated as
‘ p ’ increases. From this case ( 50, 500)m n  the proportional of acceptable
samples are found to be 44% to 60% .

Fig 4(a) in exponential (when ‘ p ’ is known) 5a  and 6 for 0.2p  the
estimate of ‘ a ’ is being over estimated and ‘ p ’ increases to 0.5 the estimates of
‘ a ’ is nearer to its true value. For the corresponding ‘ b ’ is nearer to its true
value. If 7a  and 10 as ‘ p ’ increases the estimates of ‘ a ’ is slightly under
estimated. From this case estimates of ‘ b ’ are over estimated. Here the
proportional of acceptable samples found to be 100% .

Similarly, generated estimated parameters for various combinations of
parameters ( , , )a b p , with different sample sizes ( )m and different number of
samples ( )n for a mixture of two rectangular / exponential distributions of size
m n .
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As ‘ m ’ increases (50,100,200) when ‘ p ’ is unknown, the proportional of
acceptable samples are found to be 44% to 80% . It is interesting to note that
when ‘ p ’ is known for the case of exponential the samples giving almost 100%
acceptable estimates. While in the rectangular it ranges 75% to 84%
( 5, 3)a b  . In other cases it is around 75% to 100% .

Hence on the whole this approach does not seem to give useful estimates in the
case of rectangular / exponential these are presented in tables and graphs.

This fact shows the importance of developing acceptable estimates as often
happens from samples which lead to unacceptable estimates.

6. CONCLUSIONS

1. Two parameters of a mixture distribution are quite nearer, the proportions of
acceptable estimates are found to be 40% to70%. And things become better
when parameters are relatively far off (difference is large enough).

2. For rectangular even among the acceptable estimates, the bigger parameter
is better estimated and the other one is mostly underestimated. About
estimate of ‘ p ’, not bad in rectangular, except for 5a  , 3b  ; for
exponential case it is always bad.

3. When p is known, unacceptable estimates are reduced and found
proportional to acceptable estimates of a and b , and estimated parameter
values are very close to the true value.

When ‘ p ’ is known, proportion of acceptable estimates is in nearer to be 75%
and more will be acceptable: and both estimates of a and b will be generally
good, in rectangular and exponential mixture distributions.
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