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ABSTRACT

This paper considers a multiply type Il censored sample from the two-parameter
Weibull distribution. Using a generalized non-informative prior, Bayes estimators
of parameters such as scale, shape, reliability and hazard functions are proposed.
The proposed estimators are compared with the corresponding maximum
likelihood estimators obtained using EM algorithm. The results are illustrated on

the basis of simulated as well asthe real data sets.

1. INTRODUCTION

The Weibull distribution is particularly important in the context of lifetime data
analyses, and alarge body of literature on statistical methods has evolved out of
it. Reasons for its popularity can be attributed to its flexibility and capability to
accommodate a wide variety of situations and perhaps because of the existence
of closed form expressions of its reliability and hazard function. In its simplest
form, the Weibull distribution has two parameters with probability density
function (pdf) given by,

f(x|q,b)=%xb_1e_(’(/q)b,sz (1)
q
where the positive parameters g and b are referred to as the scale and shape

parameters, respectively. The reliability functionR(t), the probability of
survival until time t, for the model is given by

R(t)=e )" @

Similarly the hazard function of the model, which describes the way in which
the instantaneous rate of failure for an item changes with time, is given by

1= (va)° ®
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The hazard function of the Weibull distribution is monotone increasing for
b >1, decreasing for b <1, and the constant for b =1. Obviously, the Weibull

digtribution reduces to the constant hazard rate exponential distribution
forb =1. The increasing hazard rate Rayleigh distribution also becomes an

important specid case of the model for b =2 (see dso Martz and Waller
(1982)).

The Weibull distribution is quite rich as far as its inferential developments are
concerned. Both classical and Bayesian inferences for the model are availablein
bulk although the situation sometimes requires for non-closed form inferential
procedures and the major reason can be attributed to the non-existence of nice
closed forms of sufficient datistics. Classicad maximum likelihood (ML)
estimators can be obtained by solving iteratively a non-linear equation forb .

The MLE of the parameters of Weibull distribution for complete and censored
data set are obtained by Cohen (1965), Balakrishnan and Kateri (2008) and
Ahmed et al. (2010), among others. For other detailed discussions on classica
inferences, leading to estimation and testing scenarios, readers are referred to
Mann et al. (1974) and Lawless (2002), etc. A few such discussions are based
on empirical findings and/or asymptotic approximations.

Bayes inferences for the Weibull parameters were considered for the first time
in avery systematic form by Martz and Waller (1982) though the authors were
mostly confined to point and interval estimation problems. The inferences are,
in general, not available in closed forms and one is required to consider one or
two dimensional integrals depending on the form of entertained priors and/or
likelihoods for the model parameters. An unrestricted complete Bayes analysis
of Weibull distribution was given by Upadhyay et al. (2001) using sample based
approaches to Bayes computation.

Upadhyay et al. (2001) also discussed several other important features using
sample based approaches (see also Upadhyay and Smith (1994)). A relatively
recent reference is due to Singpurwalla (2006) that successfully provides the
details of various Bayesian developments related to the Weibull model.

The inferential developments discussed as above are equally well applicable to
censoring scenarios such as type |l or type | schemes, although the latter not as
detailed in the literature as the former. The situation, however, becomes slightly
difficult if the available data are compounded with censoring such as
progressive or multiply schemes. This is perhaps the reason that most of the
descriptions given in the literature are confined to type Il schemes only. The
sample based approaches to Bayesian computation are, however, exceptions and
can deal with most of difficult censoring schemes in a routine manner (see, for
example, Upadhyay et al. (2001) and Upadhyay and Smith (1994)).

The present paper is an attempt to provide a generalization in the form of
multiply type Il censoring scheme when the entertained model is a two-
parameter Weibull with both parameters treated unknown. The work using
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multiply type Il censored data is limited to exponential and some similar
digtributions (see, for example, Upadhyay et al. (1996), Balasubramanian and
Balakrishnan (1992), Singh et al. (2005), etc.) but very little appears in the
literature on Weibull distribution. An important reason being the mathematical
tractability as the corresponding likelihood function (LF) further complicates
and numerical or simulation methods appear to be the only alternatives.

Multiply type Il censoring scheme is actually the combination of doubly
censoring and mid censoring schemes. This occurs when the missing
observations belong to the two extremes as well as in the middle ranges. Let us
consider, for instance, a situation when a reliability practitioner wishes to test
the quality and reliability of a product from some manufacturing process. When
the experimenter starts taking observations, he notices some failures (say, | in
number) have aready occurred. The experimenter thus starts observing the

failure times of the remaining items ((I +1)th onwards) but after noting the

failure times of a few items, he finds that the process is stopped due to some
mechanical and/or the process defect. As such he is forced to stop taking the
observations for the duration of mechanical failure. When he resumes he finds
that afew failures have aready occurred that he failed to notice. He resumes the
experimentation and terminates the same after sufficient number of failures has
been observed to draw the desired inferential procedures. Thus he leaves a few
observations in the right extreme as well. A few important situations especialy
in the context of medical, social and reliability studies have been discussed by
Balasubramanian and Balakrishnan (1992) and Upadhyay and Shastri (1997).

The plan of the paper is as follows. The next section provides the necessary
mathematical formulation for obtaining ML and Bayes estimators of model
parameters under the entertained censoring scheme. Since the issue is mainly
computational, we have advocated for the use of expectation-maximization
(EM) agorithm for finding the ML estimators. Similarly for Bayes estimators,
we have used Gibbs sampler algorithm for censored data problems as discussed
by Upadhyay et al. (2001). The essential background material needed to obtain
Bayes and ML egtimators is also provided for completeness athough the
discussions have been fully supported with the relevant references throughout.
The numerical illustration is provided in Section 3 where ML and Bayes
estimates are worked out and their corresponding posterior risks have been
provided on the basis of both rea and smulated data sets. Finaly, a brief
conclusion is given at the end.

2. ESTIMATION OF PARAMETERS

Let us consider that n items with failure time distribution given in (1) be
subjected to testing and that the observed failure times x4 <,...,< X, and
X rkaemid So-- < Xn_p arise according to a multiply type Il censoring scheme.

Thus the missing data consist of | observationsin left (X <xq,i=1...,I), m
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observationsin the middle (X, <X <X ksmi1,i =L...,m) and r observations

in the right (xi > Xyl =:L...,r). The LF based on the avail able information
can, therefore, be written as

- T s T s O )]
{1 F ()} ©

wherep=I+k+m+1 and F(.) is used to denote the cumulative distribution
function associated with the form (1). Substituting the corresponding
expressionsfor F(.) and f(.) in (4), the LF reducesto

n b? { | o) (O b m I+k n-r
—_ l_ e X1+1/q) } {e (X|+k/q) Xi k+m+1/q XI XI
l'miriq®” III_L H

9P { i r}+\$1>§b+| I+$m+l 'b}’

xe 5)
where A=n—l-m-r.
2.1 Maximum Likelihood Estimation

Taking logarithm of (5), we get

logL =Q+ Alogb — Ab logq +| Iog{l— g (va/a)" }

+m|og{ Crifa)’ —e_(xp/q)b} (b- 1){IililogxI +Zlogx,}

i=l+1 i=p

1+k n-r
—q—{rxn_ + Z X Z&b}. (6)

where Q =log(nl/(I!mir!)).

The ML estimatorsof g and b can be obtained by maximizing the log of LF
given in (6). This can be done by partially differentiating (6) with respect to g

and b , respectively, and equating them to zero giving rise to the two likelihood
eguations. On solving the two likelihood equations can be written as
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(x/0) b g x0/a) b
re(na/a)” {e T e Xp}

q° + Xt ;
{1_ & (xa) } ' {e—m/q)“ g l/a) }
b I+k b n-r b
—{rxﬁ_r + X 4% }:o, (7
i=l+1 i=p

and

L+1,+1;-1,=0, (8)
where

n—

~(X,1/9)" b b 1+k

e X, log(x

— 1+1 /gb( I+1) +qb Z IOgXi +
{1— ei(x'*l a) } i=l+1 i

rIogx +A
1 b '

i=p

|{e*(><«+k/q)b Xl+kb |09(X|+k /q)b _e—(xp/Q)b Xpb |Og(Xp /q)b}

b _ b
{e—(m/Q) _g %/ }

+k n

b —r
ly=—4rx,_ >+ > x2+> x" -
q i=l+1 i-p

I1+k n-r
{rxn_rb logx, . + > %" logx + > x° Iog&}.

i=l+1 i=p

k

T

x.” log x; + 2 x.” log xi}.

_ b
I, =41X,_, 109 X,_, +
I+1 i=p

The solutions of (7) and (8) will provide the ML estimators of g and b,
respectively, provided one makes sure about the sufficient condition, that is, the
associated Hessian matrix is negative definite (see, for example, Kenda and
Stuart (1967)).

It can be seen that the equations for obtaining ML estimators of g and b

cannot be solved analytically to get closed form solutions and, therefore, one has
to rely on numerical approximations, which involve solving a set of two
nonlinear equations (7) and (8). A possible approach can be Newton-Raphson
method or any other iterative procedure. We, however, advocate the use of
comparatively efficient expectation-maximization (EM)algorithm (see, for
example, Dempster et al. (1977)) for missing data problems. The EM algorithm
consists of two steps. The first step known as the expectation step (E — step)
consists of estimating the unknown censored data on the basis of the current
values of the parameters. Suppose the current values of g and b are denoted
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by q. and b, and suppose the estimated censored observations on the first
implementation of E—step are denoted by X;,...,X (in the left region),
Xiks1re Xakem (IN the middle region), and x,_,,q,...,%, (in the right most
region). These censored observations can be estimated by generating them from
the truncated Waeibull distributions in the specified ranges (0,x.,),

(Xt Xoremer ) @ (X, ,0), respectively, using the current values g, and b, .

The analytical estimation for the censored observations might be difficult in this
case but one can aways use simulation based strategy for estimating the variate
values from the corresponding truncated distributions. Say, for instance, one is
interested in estimating x,...,X% in the E-step from the truncated Weibull

distribution in the region (0,x.,). One can generate several thousand values

corresponding to each of these missing observations and retain the
corresponding simple arithmetic average as its estimate. So, once these missing
data are estimated, the complete data likelihood at this stage can be written as

chﬁf(xi|q,b). 9)

Obvioudly, (9) contains both estimated censored data and the observed failure
times.

The second step of EM algorithm, known as the maximization step
(M —step) , consists of maximizing the likelihood (9) with respectto q and b .

This task is comparatively simpler and reduces to finding Weibull ML
estimators for complete data problem. This maximization can be done by

differentiating log(L,) separately with respect to q and b and solving the
corresponding equations after equating them to zero. Of course, one has to
verify the sufficient condition that is the associated Hessian matrix is negative

definite. On simplification, the two likelihood equations based on (9) can be
written as

el

and

- nl 3 ¥ logx + 3 logx =0. (11)
b, Z be i=1 niz
X
i=1
The equation (11) can be solved by Newton-Raphson method to get an updated
b, and using this updated b, in (10), a new ¢, can be obtained. These new

updated g, and b, can be used again in E—stepto get the new estimated
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censored data values and then in M — stepto get anew g, and b, from (9). The
process can be repeated until some systematic pattern of convergence or desired
level of accuracy is achieved.

Oncethe ML estimatesof q and b are obtained, the reliability function and the

hazard function can be estimated using the invariance property of the ML
estimators. Thus, the corresponding ML estimators of reliability and hazard rate
atimet are

éML (t) _ e‘(t/dML>bML , (12)
and
H ML (t) = EML (t/dML )bML_l ) (13)

where ciML and BML are the ML estimators of the parameters q and b,
respectively.
2.2 Bayes estimation of the parameters

Bayesian estimation of Weibull parametersin case of multiply type Il censoring
can also be attempted in a way similar to what has been done with ML
estimation but this time the procedure can be based on Gibbs sampler algorithm
for censored data situations. Undoubtedly, the Bayesian estimation can be
attempted in several other ways but the Gibbs sampler algorithm is being
advocated because of its inherent ease. Before we provide the necessary details
of the agorithm, let us discuss the relevant modelling formulation for the
implementation of the Bayesian paradigm.

To begin with, consider the form of likelihood given in (9) presuming as if there
is no censoring and dl the observations are made available although the
situation involves a few unknown observations corresponding to missing
censored data. Following Upadhyay et al. (2001), let us assume a joint non-
informative prior for the parametersq and b as

1
g(a.b) b (14)
Combining the LF in (9) with the prior in (14) via Bayes theorem, the joint
posterior distribution of the parameters g and b up to proportionality can be

written as
b"™ o v 1 &b
p(q=b|x)“—qnb+1l_[>ﬁ exp —q—bZK : (15)
i=1 i=1

The posterior given in (15) istoo complicated for the analytical determination of
any closed form inferences. Moreover, it has unknowns in the form of missing
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censored data as well. We, therefore, recommend the use of Gibbs sampler
algorithm for censored data problems so that sample based inferences on the
posterior (15) can be easily drawn. The discussion given below provides a brief
review of the algorithm for censored data problems but with a focus on posterior
(15). The interested readers may refer to Upadhyay et al. (2001) for further
details and relevant references.

The Gibbs sampler agorithm is a Markovian updating scheme for extracting
samples from the posteriors specified only up to proportionality asin (15). The
agorithm requires the specification of full conditionals for the concerned
unknown variate values from the joint posterior distribution. Once the full
conditionals are made available, the agorithm proceeds in a cyclic manner by
generating from various full conditionals, in turn, and using the most recent
values for al the fixed variates in a conditiona structure. It can be shown that
after sufficiently large number of iterations, the generated variates converge in
digribution to a random sample from the corresponding posterior (see, for
example, Upadhyay and Smith (1994)).

To clarify, let us consider the joint posterior (15). It has unknown q and b

besides having the unknown censored observations. The full conditionals of g
and b can be written as

1 1L
p_L(q|b,X)ocmexp{__b‘ &b}, (16)
q q i=1

bn_l - b-1 1 b

P, (bla.x)e g 1% exp{——be } (17)
whereas the full conditionals for the unknown censored observations can be
taken as the truncated Weibull distributions in the corresponding cut-off regions.
Since the censored observations are independent, each can be drawn separately
from its truncated distribution. Suppose, for instance, we are interested in the
censored observations x,...,% (censored in the left region) then each can be
generated independently from the truncated Weibull distribution truncated in the
region (0, x,ﬂ) . The ranges for generating other censored observations from the
corresponding truncated Weibull distributions can be specified similarly. It isto
be noted that we need to consider the current values of @ and b for generating
the censored observations from the corresponding truncated Weibull
digtributions. Now coming back to conditional structures given in (16) and (17),
it can be seen that (16) can be reduced to a gamma distribution with scale

parameter ( Z)gb]and shape parameter n by taking a transformation
i=1

| =q®. Thus | can be easily generated from the gamma distribution using
any gamma generating routine and transforming back to q, one can get the
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corresponding samples of g from its conditional structure. (17) can be shown to
be concave on logarithmic scale and, therefore, b can be generated using

adaptive regjection sampling agorithm of Gilks and Wild (1992). Thus all the
full conditionals can be easily generated giving rise to successful
implementation of the Gibbs sampler algorithm.

The Gibbs sampler algorithm so defined can be run for sufficiently large number
of iterations until some systematic pattern of convergence is noticed among the
generating variates. Once the convergence monitoring is done, one can pick up
observations at suitably chosen intervals to form a random sample from the
corresponding posterior with components representing the sample from the
corresponding marginal posterior. The gaps are chosen so as to minimize the
serial correlation among the generating variates.

Once the samples are obtained perhaps any sample based posterior estimates can
be easily formed (see, for example, Upadhyay et al. (2001)) though our study is
confined to Bayes estimates of parameters and afew posterior density estimates.
The other apparent advantage of the agorithm is that once the parameter
estimates are obtained, one can easily use the same to form the estimates of any
linear or non-linear function of the parameters. Say, for example, the Bayes
estimates of reliability function and hazard function at time t can be written as

(t/d )

Re(t)=€ (18)
and
Ao ()= 22 (10 (19)

where dB and BB are the corresponding Bayes estimates of the parameters q
and b , respectively.

3.NUMERICAL ILLUSTRATION

The numerical illustration is based on area aswell as a simulated data set from
the Weibull model (1). In both the cases we obtained classica ML estimators
and Bayes estimators of the model parameters. Our focus has been on multiply
censoring scheme though the cases of left, right and mid censoring schemes are
also considered, the latter being particular cases of the former.

3.1 Simulated data based study

In order to obtain the ML estimates and the corresponding Bayesian results for
the parameters of the Weibull model under multiply type Il censoring scheme,
we first generated a sample of size 20from (1) with g =6.00 and b =2.00.

Since the cumulative distribution function of the Weibull model is available in
closed form, this generation can be easily done by the inverse transform method.
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We next considered as if the 50% of the generated Weibull observations were
censored in accordance with multiply censoring scheme and took some arbitrary
choicesof I,m and r leaving the corresponding generated observations . These

choices were done so that exactly 50% of the observations were made available
as observed failures (Tables 1-4 for different arbitrary choicesof I,m and r ).

The ML estimates of Weibull parameters based on the above scheme were
obtained using EM algorithm (see Section 2.1) for the considered combinations
of I,k,m and r . For E-step, we considered 5000 generated values for each of

the missing observations by generating from the corresponding truncated
Weibull distributions and evaluated simple arithmetic averages as the estimate
in each case. The ML estimates of g and b for different combinations of

I,k,m and r are shown in Table 1 whereas the corresponding estimates for
R(t) and H(t) are given in Tables 3 and 4, respectively. The estimates of

R(t) and H (t) were obtained by substituting the corresponding estimates of g

and b in the expressions of R(t) and H(t). The mission time t was
arbitrarily fixed at 5.0,10.0and 15.0 (see Tables 3-4).

We next applied the Gibbs sampler agorithm as per the details given in Section
2.2 for the considered combinations of |,k,m and r and using the ML

estimatesof g and b astheinitia values for running the chain. We considered

a single long run of the Gibbs chain and the convergence monitoring was done
using ergodic averages for both g and b . It was assessed at about 50,000

iterations for the considered 50% censored scenario. It can be noted that the
stabilized ergodic averages are nothing but the posterior means and, therefore,
can be considered as the Bayes estimates corresponding to squared error loss

function. Besides, we also monitored the chains corresponding to R(t) and
H(t) at three different mission times t(=5,10,15) . The chains corresponding to
R(t) and H(t) were obtained from the chains of q and b by substitution.
The stahilized ergodic averages for R(t) and H(t) were also obtained in a
similar manner which may be considered as the Bayes estimates of R(t) and
H (t) corresponding to squared error loss function. Table 1 provides the Bayes
estimates of model parameters g and b whereas the corresponding estimates
for R(t) and H (t) areshownin Tables3and 4.

The Gibbs chain was run for another 50,000 iterations after the convergence

was monitored based on ergodic averages. We then picked up equaly spaced
outcomes (every 10-th) from the last 50,000 generated outcomes to form

samples of size 5000 from the corresponding marginal posteriorsof g and b .
These gaps were chosen to make seria correlation negligibly small. We also
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evaluated 5000 posterior samples for each of R(t) and H (t) using the samples
of g and b at t=5,10and 15 separately. The estimated posterior risks of ML

estimates and the corresponding Bayes estimates using the 5000 simulated
posterior samples are shown in parentheses for each of the considered
parameters. These posterior risks correspond to the squared error loss function.
It can be seen from Tables 1-3 that the ML estimates and the corresponding
Bayes estimates are quite close to each other in terms of their magnitudes but
the posterior risks of latter are, in general, smaller than those of former. This
conclusion suggests that Bayes estimators, in general, outperform the
corresponding ML estimators.

Table1l: MLand Bayesestimatesof g and b at different combinations of cen-

soring parameters (results based on smulated data with overall
censoring 50%)

ML estimate Bayes estimate
aheme |1 kom o A P D
eIV b Os Be
6 4 2 2 7.88 2.56 7.94 2.22
5 6 2 3 7.77 2.58 7.89 2.19
7 5 2 1 7.78 2.37 7.76 2.05
Multipy |5 4 4 1 7.92 2.46 794 | 221
4 3 4 2 7.92 2.60 8.02 2.33
3 4 4 3 7.93 2.80 8.06 247
5 54 1 7.88 244 7.89 2.18
Left 10 10 0 O 7.53 2.20 7.27 1.78
Doubly 8 10 0 2 7.74 245 7.68 197
Mid 0 5100 8.24 2.78 8.29 2.63
Right 0 10 0 10 6.70 5.67 6.21 9.16




70 Bayes and maximum likelihood ......... multiply type-1l censoring

We have also provided the marginal posterior density estimates of g and b in

the form of histograms (see Figures 1-2) using the simulated posterior samples
of size 5000 from each of the two posteriors. In each of the figures, the vertica
line corresponds to the ML estimates. The histograms are shown for one
combination of I,m,r and k although a similar behaviour was noticed for all
other considered combinations. For rest of the combinations of |,m,r and k,
these estimated densities are, however, shown in the form of boxplot
representations (see Figures 3-4). It can be seen that most of the estimated
posterior densities are more or less similar in appearance and there is no
appreciable change in the estimates for changing combinations of |,m,r and k.

Table 2: Estimated posterior risks of ML and Bayes estimators of q and b

corresponding to squared error loss (results based on simulated data
with overall censoring 50%)

Posterior Risk

“oeme’ || kom oo . A .
Qe b e Os B
6 4 2 2 0.876 0.253 0.878 0.366
5 6 2 3 1.002 0.286 1.020 0.429
7 52 1 1.010 0.235 1.011 0.332
Multiply | 5 4 4 1 0.791 0.220 0.793 0.282
4 3 4 2 0.862 0.270 0.873 0.338
3 4 4 3 0.772 0.291 0.787 0.406
5 5 4 1 0.909 0.216 0.910 0.280
Left 10 10 0 O 1.362 0.241 142 0.386
Doubly 8 10 0 2 1.183 0.270 1.187 0.495
Mid 0 5100 0.618 0.201 0.622 0.221
Right 0 10 0 10 0.289 2.959 0.533 15.376
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Table 3: ML and Bayes estimates of reliability and the corresponding

posterior risks (of order 10°) in parentheses (results based on
simulated data with overall censoring 50%)

ML estimate of R(t)

Bayes estimate of R(t)

Censori
ng Il kmr
h ~ ~ ~ ~ ~ ~
seneme Ru(®) | Ri(0)| Ry (19 | Rg(®) | Re(10) Rs(15)
6422 0.732 0.159 0.006 0.684 0.198 0.030
(11.555) (7.436) (2.798) (9.340) | (6.286) | (1.862)
562 3 0.726 0.147 0.004 0.682 0.193 0.033
(10.778) (9.055) (2.348) (8.914) | (6.919) | (1.481)
—— 0.704 0.163 0.009 0.658 0.193 0.033
(11.813) (6.429) (2.103) (9.701) | (5.540) | (1.481)
Multipl
y 5441 0724 0.170 0.008 0.687 0.196 0.028
(10.210) (6.450) (1.735) (8.859) | (5.740) | (1.309)
4342 0.739 0.160 0.005 0.705 0.192 0.025
(9.089) (7.232) (1.737) (8.015) | (6.142) | (1.300)
3443 0.760 0.147 0.003 0.723 0.187 0.023
(8.656) (8.233) (1.719) (7.250) | (6.690) | (1.307)
5541 0.719 0.167 0.008 0.682 0.194 0.029
(9.823) (6.101) (1.496) (8.620) | (5.315) | (1.081)
0.666 0.155 0.011 0.592 0.179 0.039
Left 101000
(18.551) (5.183) (2.234) (12.798) | (4.600) | (1.469)
0.710 0.154 0.006 0.644 0.193 0.038
Doubly | 8 10 0 2
(15.330) (7.514) (2.842) (10.990) | (6.075) | (1.863)
) 0.779 0.180 0.005 0.756 0.200 0.016
Mid 05100
(6.758) (5.575) (0.780) (6.214) | (5.210) | (0.528)
_ 0.872 0.751 0.0000 0.802 0.802 0.001
Right 010 0 10
(10.665) (5.419) (0.071) (5.673) | (2.142) | (0.070)




72 Bayes and maximum likelihood ......... multiply type-1l censoring

Table4: ML and Bayes estimates of hazard rate and the corresponding posterior
risksin (results based on simulated data with overall censoring 50%)

ML estimate of H (t) Bayes estimate of H (t)

Censoring l kmr R R R R N ~
scheme Huo (5) HML(lo) Hu (15) HB(S) HB(lo) HB(lS)

2252 0488 |0.017 |2598 |0.821 |0.183

0422 8211) | (6632) | (5.415) | (8.067) | (6.499) | (5.376)

Multiply £ 603 2185 | 0442 |0012 |2600 |0.823 |0.186
(0.875) | (0.596) | (0.202) | (0.712) | (0.459) | (0.176)

2311 | 0535 (0028 |2590 0821 |0.174

75210 0679 | (0458 | (0174) | (0.602) | (0377) | (0.152)

2331 | 0545 (0026 |2582 |0.800 |0.154

>4l (4.766) | (3.886) | (3.173) | (4.698) | (3.815) | (3.154)

2251 | 0486 |0.015 |2517 |0.743 |0.123

43421 0546) | (0360) | (0096) | (0472) | (0292) | (0.083)

2151 | 0417 |0.007 |2468 |0.705 |0.112

3443 0668 | (0449 | (0.144) | (0.567) | (0.366) | (0.133)

2322 | 0540 0026 |2553 |0.778 |0.139

>S4 1) 0420 | (0265 | (0.055) | (0.365) | (0.209) | (0.043)

10 10 0| 2280 | 0529 | 0036 |2516 |0.829 |0.215
0 (0.589) | (0.366) | (0.124) | (0.540) | (0.283) | (0.094)

Left

2242 048 0020 |2620 |0.860 |0.207

Py 1810021 4 779) | (0517) | (0.163) | (0.646) | (0.383) | (0.128)

0 5101|2309 |05345 | 0014 |2440 |0.679 | 0.069

"o (1350) | (L058) | (0.784) | (1.331) | (1.036) | (0.780)

0 10 0/ 0590 |0000 |0000 |1.066 |0.045 |0.004
10 (0.409) | (0.032) | (0.002) | (0.182) | (0.030) | (0.002)

Right
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Fig 1. Histogram showing the marginal posterior density estimate of q for
| =6,k=4,m=2,r =3, vertica line showsthe ML estimate.
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Fig 2: Histogram showing the marginal posterior density estimate of b for
| =6,k=4,m=2,r =2, vertica line showsthe ML estimate.
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Fig 3: Box plot showing the marginal posterior density estimates of q at
different combinations of |,k,m and r based on simulated data.

Fig 4. Box plot showing the marginal posterior density estimates of b at
different combinations of |,k,m and r based on simulated data.
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3.2 Real data based study

Theillustration in this section is based on a data set reported by Lawless (1982).
The data set of size 20 represents the voltage levels at which the failures
occurred in the electrical cable insulation when specimens were subjected to an
increasing voltage stress in a laboratory experiment. The complete set of
observationsin an ordered formisgivenin Table 5.

Table5: Failure voltages (in kilovolts per millimetre)

394 453 492 494 513 520 532 532 549
55.5

571 572 575 592 610 624 638 643 673
67.7

In order to obtain the ML estimates and the corresponding Bayesian results for
the Weibull parameters, we first alowed for multiply censoring scheme by
leaving 10 observations from the left, mid and right regions and thereby
allowing only 10 observed failures. This was done to have 50% censoring
though other levels of censoring percentages can be similarly fixed in advance
for obtaining the estimates. The different combinations of I, m,r and k so asto
alow 50% censoring from left, right and mid regions are given in Tables 6-8.
The ML estimates based on EM algorithm and the Bayes estimates based on
ergodic averages are shown in Tables 6-8 for the considered combinations of
I,k,m and r . These estimates were obtained exactly similar to what has been
discussed for simulated data set and, therefore, we do not feel any further
advantage in discussing the details afresh. Once again the convergence in Gibbs
sampler agorithm was monitored based on single long run of the chain and it
was assessed at about 50,000 iterations.

The posterior density estimates of q and b based on a single combination of
I,k,m and r are shown in Figures 5-6 with vertica lines in each figure

corresponding to ML estimates. It can be seen that the ML estimates adlso liein
the high probability regions and are quite close to the Bayes estimates in each
case, a conclusion that was observed earlier too. The posterior density estimates
of g and b for other combinations of |,k,m and r are not shown athough we

have shown here the density estimates of R(t) and H (t) for t=50 at different

combinations of I, k,m and r. These are shown by means of box plot
representations in Figures 7-8. A word of remark: most of the results given in
the paper are meant for illustration only. We feel that once the posterior samples
are obtained perhaps any study becomes routine in Bayesian paradigm.
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Table 6: ML and Bayes estimates of q and b at different combinations of

censoring parameters (results based on real data with overal
censoring 50%)

. ML estimate Bayes estimate
Censoring I kK m r
Scheme R R - -
Ow by Os bg
6 4 2 2 58.94 8.31 58.81 9.43
5 6 2 3 59.34 8.03 59.07 9.29
7 5 2 1 59.00 7.35 58.69 8.95
Multiply 5 4 4 1 59.26 7.92 59.18 8.65
4 3 4 2 59.12 8.72 58.96 9.69
3 4 4 3 59.32 8.32 59.04 9.35
5 5 4 1 59.33 7.94 59.23 8.68

Table 7. Estimated posterior risks of ML and Bayes estimators of q and b

corresponding to squared error loss (results based on real data with
overall censoring 50%)

Posterior Risk

Am by de bg

6 4 2 2 3.976 | 5342 | 3.950 4.115

5 6 2 3 4720 | 5.657 | 4.641 4.024

7 5 2 1 4940 | 5.696 | 4.839 3.107

Multiply |5 4 4 1 4014 | 3462 | 4006 | 2934
4 3 4 2 3464 | 4713 | 3433 | 3.816

3 4 4 3 3911 | 4669 | 3.851 3.581

5 5 4 1 4310 | 3597 | 4.304 3.055
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Table 8 ML and Bayes estimates of R(50), H(50) and the corresponding

posterior risks (of order 10°) in parentheses (results based on real
datawith overall censoring 50%)

Reliability and Hazard | Reliability and Hazard
Censoring | | k m r | of ML estimate of Bayes estimate
Ru (50) | Hy (50) | Rg(50) | Hg(50)
642 2 0.805 5.022 0.761 5.616
(9.822) (1.541) (8.058) (1.178)
56 2 3 0.808 5.141 0.763 5.893
(10.144) (2.168) (8.029) (1.590)
75921 0.787 5.167 0.732 6.086
Multinl (12.263) (2.048) (9.196) (1.188)
ulti
Py 5441 0.792 5421 0.75 5.849
(8.138) (2.179) (7.0916) (0.991)
4342 0.816 4.969 0.780 5471
(8.026) (2.189) (6.806) (0.941)
344 3 0.809 5111 0.773 5.720
(7.931) (2.579) (6.536) (1.214)
5541 0.794 5.422 0.762 5.863
(8.613) (1.240) (7.504) (1.048)
- 3
[ -
=]
[ ]
D -
L{n]
: 171_
D -
[ ]
D —
[ I I I I I
50 55 B0 G55 70 75

Fig 5: Histogram showing the marginal posterior density estimate of q for
| =6,k=4, m=2,r =2, vertical line showsthe ML estimate.
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15

2,r =2, vertical line showsthe ML estimate.
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Fig 6: Histogram showing the marginal posterior density estimate of b for

different combinations of I,k,m and r (results based on rea data with

Fig 7: Box plot showing the marginal posterior density estimate of R(50) at
overall censoring 50%).
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Fig 8: Box plot showing the marginal posterior density estimate of H (50) at

different combinations of I,k,m and r (results based on rea data with
overall censoring 50%).

4. CONCLUSIONS

The present study is an attempt to provide Bayes and ML estimates of Weibull
parameters under multiply censoring scheme. Multiply censoring scheme which
isageneralized version of type Il or item censoring scheme is normally difficult
to deal analyticaly due to complex form of likelihood function. It can be seen
that our approaches are not only straightforward but capable of providing
routine implementation from the viewpoints of applied reliability practitioners.
Besides, it can be seen that although ML estimators are generally close to Bayes
estimators, they sometimes lie in the low probability regions on the estimated
posterior densities of the corresponding parameters giving a clear message in
favour of Bayes estimators.

Our study also reveals an important fact. It suggests that whatever left, right and
mid censoring combinations are used, the density estimates of the parameters
remain more or less same. This may be because of the fact that missing data are
estimated from the two-parameter Weibull distribution and, as such, we have
used the complete data set for the final reporting. This, in turn, suggests that our
modelling assumption is also appropriate at least for the considered real data set.
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