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USE OF SOME FUNCTIONS OF SPACINGS IN THE ESTIMATION OF
COMMON SCALE PARAMETER OF NORMAL AND DOUBLE
EXPONENTIAL DISTRIBUTIONS

R.S. Priya and P. Yageen Thomas

ABSTRACT

In this paper we consider the problem of best linear unbiased estimation and best
linear invariant estimation of the common scale parameter of a normal and double
exponential distributions using some functions of spacings of all observations of
individual samples. We have also proved a sufficient condition for the non-
negativity of the common scale estimator obtained by the above method. Further
we have obtained necessary and sufficient condition for the derived estimators to
be constant multiple of the sum of first and last spacings of pooled sample.

1. INTRODUCTION

It is well-known that order statistics are very useful in the estimation of location
and scale parameters of a distribution. For a survey of literature on the
application of order statistics in estimating the location and scale parameters of
distributions, see, Balakrishnan and Cohen (1991) and David and Nagaraja
(2003).

For a discussion on the problem of estimation of common location and common
scale parameters of several distributions using order statistics of the pooled
sample is given in Sajeevkumar and Thomas (2005). Arnold et al. (1992, p.174),
observed that the existence and uniqueness of the BLUE for the scale parameter
of a distribution do not guarantee that it is always non-negative. Balakrishnan
and Papadatos (2002) have given a simpler formula for the BLUE of the scale
parameter of a distribution using spacings. Further they have proved a sufficient
condition for their estimator to be positive. Sajeev kumar and Thomas (2010)
have extended the method proposed by Balakrishnan and Papadatos (2002) to
estimate the common scale parameter ¢ of several distributions by spacings of
order statistics of inid random variables.

2. MOTIVATION FOR ESTIMATING THE COMMON SCALE
PARAMETER OF SEVERAL SYMMETRIC DISTRIBUTIONS BY
USING SOME FUNCTIONS OF SPACINGS
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Let Xi1,X2,»Xi, be n; independent observations drawn from a

1

population with distribution function denoted by F, '[x,- _'uj, i=12,...,k,
o

—co< t<oo, 0>0. Let Xy,,X5,..,X,, be the corresponding order
statistics of the pooled sample of all n=n; +...+ n; observations. Now if we

X, —
Write Yr:n =[Lﬂ
o

identically same as the order statistics of the pooled sample of k independent
random samples of which n; are drawn from the distribution with distribution

function  F;(y), i=12,..,k. Then the distribution theory of

Y1, Y215 Yy, ) can be dealt with using the result of Vaughan and Venables
(1972).

j, r=12,..n, then (Yi,,Y,...Y,,) is distributed

Now we consider the case when the basic distributions are all symmetrically
distributed about the common location parameter 4, Then from Bepat and Beg

(1989) the distributions of Y=Y, Yy, ) and

~Y,.n—Yy_tn»--—Y1,, ) are identical.

and W; =Y~ Yy, j=12.on—1,

n>

Now define W;=X;,,-X;

R, =W; +W,_; and Ri* =W,-* + n_i*, i=12,..,[n/2], where [.] is the usual

i
% d %
greatest integer function. Clearly Wj' =W,_;, j=12,...,n-1.

k k * ' d
Thus if we write W™ = (W, ,W5 ,...,W,_;) then W* = JW" , where

[0 0 0 1]
00 10
J=

10 . . . 00

is a square matrix of order n-1.

Let the expectation of the vector W" =(W1*,W2* ,...,W;_l)' and its variance-

covariance matrix D(W *) be given by

EW")=a, @1
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(where E(W, )=a, , j=12,...,n—1 and

DW*)=B (2.2)
Also
s=elw'w”) @3)

Clearly B and S are square matrices of order n —1. Also the elements of « ,
B and S are free of # and o . Clearly

EUW") = Ja 2.4)
And hence we have

a=la, 2.5)
Also D(JE*) = JBJ and hence

B=JBJ (2.6)

Left multiplication of B by J changes the i —th row into (n —i)—th row and

right multiplication of B by J changes the j—th column into (n—j)—th
column. Then from (2.6) it is seen that if the j—th column vector of B is

(cl,cz,...,cn_l)', then its (n— j)—thcolumn vector is (cn_l,cn_z,...,cl)'.
Similarly if the i—th tow of B is (r,7p,....7,—;) then its (n—i)—rthrow is

(rn_l , rn_z yeeny 7'1 ) .
Also from the identity J =J o7 we get
B =yl 2.7

Thus we see that the property described for B is true for B! also.

Now the best linear unbiased estimator for the common scale parameter G using
spacings of order statistics of pooled sample of all observations are given by
(see Sajeevkumar and Thomas 2010)

Ly=@B ') 'a B7'W 2.8)
And
| —1
Var (Ly ) = (g B g) o?, (2.9)

where W = (W, Wy,....W,_;).
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Also the best linear invariant estimator for the common scale parameter G using
spacings of order statistics of the pooled sample of all observations and
corresponding MSE are given by (see, Sajeevkumar and Thomas 2010)

Ly=as™'w (2.10)
and corresponding MSE is given by

MSE(L;)=(l-a's " a)o? 2.11)
The connection between BLUE and BLIE of o is given by (See,Sajeevkumar
and Thomas 2010)

Ly =aly, (2.12)

Where a is a constant (0<a<1) andis givenby a= Q'S_lg.

Clearly the form of the vector ¢ is Q{' = (0{1,0{2,...,05[”/2],a[n/zl_l,...,al) for n

even and Qt' =(051,052,...,05[”/2],0{[”/2],...,051) for n odd , where [] is the usual

greatest integer function. Using this property of & we see that the coefficients

of W; and W,_; in the estimator Ly defined in (2.8) are identically equal.

This property of L;; proves that BLUE of o reduce to a linear function of
spacings namely R; =W; +W,_;,i=1,2.....[n/2] Using (2.12) clearly BLIE of
o also reduce to a linear function of spacings of pooled sample namely
R, =W; +W,_;, i=12,.,[n/2] Thus there is some advantage in using
R;,i=12,.., [n/ 2] in estimating ¢ by an estimate which involves a covariance
matrix of order [n/ 2] only where as in (2.8) an equivalent estimate involves a
covariance matrix of order n-1. In section 3 we derived an estimator of o and
its variance based on Ri,i=1,2,...,[n/2] .

3. BLUE AND BLIE FOR THE SCALE COMMON PARAMETER
USING SOME FUNCTIONS OF SPACINGS

In section 2 we have proved that if the parent distributions are symmetric about
the common location parameter # then the BLUE of common scale parameter

o reduces to some function of spacings. Hence there exit constants c;
i=1.2,....[n/2], such that
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[n/2] d [n/21
L= ciRi=c Y iR}, @3.1)
i=1 i=1

*

Let R" = (RT,R;,...,R[H ,2]) be the random vectors of functions of spacings of

the pooled sample from the completely known F,(y) and use the notation

M=ER).H=DR).Q=ERR"). (3:2)
where D(&) )denotes the dispersion matrix of the random vector & . Clearly
H=0-MM’, H>0,0>0 (3.3)

Now we have the following

Proposition 3.1: Under the above assumptions and the notation of this section,
the BLUE of the common scale parameter 0 and its variance are given by
"1 2
M H .
L,=-S———R with Var(L,)=—"——
MH'M MH'M

(3.4)

where R =(Ry, Ry s Rinsay) -
Proof: Since the form of the most general location-invariant estimator of Gis
L:glg , where c= (Cl’CZ’---’C[n/Z] )', it follows that it is unbiased for o if and
only if

cM=1 (3.5)
On the other hand its variance is given by

Var(L)= (c He)o?. (3.6)
Thus we wish to minimize (3.6) under restriction (3.5).Taking into the account
the Lagrangian (Q(c: 1)) = ng c— ZA(Q'M ),it is easy to seen that the optimal
value is ¢ = /1(H -1 M ) and the restriction yields A = ,;; this completes

MH'M

the proof.

Now the BLIE of the common scale parameter using function of spacings is
given by the following theorem.
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Proposition 3.2: Under the above assumptions and the notation of this section,
the BLIE of the common scale parameter ¢ and its MSE are given by,

L;=M Q'R with MSE(L))=(1-M 0~ 'M)o>. (3.7)

The proof follows by the same arguments as in proposition 3.1,except that we do
not have to use restriction(3.5).

The connection between BLUE and BLIE of the common scale parameter o is
given in the following proposition.

Proposition 3.3. There exist a constant a, 0<a <1, independent of x#and o
such that

Ly =alL, (3.8)
This constant is given by
MO 'M

== = (3.9)
1+M Q0™'M

a=M Q 'M =

Proof: First note that Q = H +MM' (See equation 3.3).Thus , by theorem 8.9.3
1

+M H

in Graybill(1969) implies that Q' =H ' - (H_IMXH_IM)
1

' 2
!
and thus M Q_IM =M H _IM —M, proving the second equality
1+M H'M

in (3.9).Consider now the class of estimators of the form Ly = AL,,1e R Itis
easy to see that they are linear invariant estimators and ,moreover, that

2
MSE(L;)=E(AL, - 0')2 =|— A —+ (1- /1)2 o?. Therefore ,minimizing
MH'M
"1
the last expression with respect to 4 ,we get A= M =ae (0,1). For
1+M H'M

this value of 4 =aq it follows that

0_2

MSE(L,) = = (1 -M0'm )02 = MSE(L; ).Hence the proof.

1+M H'M
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4. CONDITION FOR WHICH BLUE (OR BLIE) OF THE SCALE
PARAMETER 0 IS A MULTIPLE OF R, =W, +W,_; AND NON-

NEGATIVE

In this section, we obtain, necessary and sufficient conditions under which the
BLUE (or, equivalently, the BLIE) of the common scale parameter Gis a

constant multiple of R} =W, +W, =Xy, — X1, + X, — X;,_1;n (Clearly
when n=2 then R; reduces to twice sample range and when n=3 then R;

reduces to sample range), have also proved the non-negativity for the scale
estimator L, of o .In particular we shall prove the following.

Theorem 4.1: The BLUE (or the BLIE) of the common scale parameter G is
a constant multiple of R; if and only if any one of the following equivalent
conditions hold.

(). There exist a constant A; such that M =A4;(Qn), where n=(1,0,...,0),
vector of order [n/2].

(i1).There exist a constant /11 such that E(Ri*):ﬂlE(R?Rr), i=1,..,[n/2],
where Rl* = Wl* +W:—l =Yo, ~Yin + Y — Yoot -
(iii). There exist a constant A, such that M = A, (Hn) .
(iv).There exist a constant A, such that E(R,-*) = /12C0v(R,-*R1*), i=1,..,[n/2],

where R| is as defined in (ii).

When (i)-(iv) hold, the BLUE of cis given by

|:X2:n _Xlzn +Xn:n _Xn—lzn]

! Al on) Ao\ Hn)

and the BLIE of the common scale parameter o is

L = X2:n _Xlzn +Xn:n _Xn—lzn]

Ly =11(X2:n =X + X — Xn—l:n)=|:12(X2:n ~Xin ¥ Xn = Xt )]

1+ﬂ%@'Hﬁ)

Proof: First observe that (i) is equivalent to (ii) and (iii) is equivalent to (iv). If
(ii) holds, then E(R; )(1—A)E(R; )=} Cov(R R),i=1,...[n/2],
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which can be rewritten as E(R,-*):/izCov(R,-*Rr), i=1,..,[n/2] where

*

E(R
A —and thus, (iv) holds (observe that 4 = ( *12) _since
1-4ERy) E(R{?)
N [n/2] N [n/2] - 0 N
ER))= Y ER)=2A Y, E(R;R)=M}E(R ~)andhence 0< 4 E(R;)<1.
i=1 i=1
Conversely, if (iv) holds, then
" [n/2] N [n/2] . .
E(Ry)= Z ER;)=4, Z Cov(R; Ry ) =A,Var(R;)
i=l i=1
E(R})
showing that Ay = Bk R —€(0,%0) and
Var(R;)

E(R])+ A E(R)ER]) = L E(R{R))
i=1,...,[n/2] the last expression can be rewritten as E(Ri*) = ﬂlE(R?Ri*) ,
%)

*

i=1..,[n/2] with 4} =——=——
1+ L E(R))

which is (ii).There fore all conditions (i)-

(iv) are equivalent.
Assume now that (i) holds. Then from (3.7), the BLIE of o is
L= MVQ_lﬁ =4 QVB): A (X2:n =X + Xy = Xp—tn ) and the other
formula follows from (3.9) and (3.4).
In order to prove the necessity, assume that L; = AR :l(i R) is the BLIE

of o . Then E(AR; — 6)>=A%(n' On)+1— A)n M)c>, must be minimum with

respect to A , showing that A = zM . Since for this value of A we must have

nQn

' 2

E(AR, -0)* = L Bl =MSE(L;)=(1-M Q'M)* we conclude
n Q1

that (E'M)Z = (H'Qﬁ)(M'Q_IM) .This is Cauchy-Schwarz inequality written as

an equality and, therefore, this equality is attained only if there exist a constant

Ay such that M = A4;(Qn), completing the proof.

The non-negativity nature of the estimator L,and Ljof the common scale
parameter o is given in the following theorem.
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Theorem 4.2: If either n=2 or 3 then the BLUE (and the BLIE) of the
common scale parameter ¢ is nonnegative.

Proof: If n=2 or 3, then by theorem 4.1 the n=2 or 3 of o is a constant
multiple of the pooled sample range and the result is obvious.

Theorem 4.3: If the known distribution functions, F;(y),i=1..2,....,k are such
that

Cov(R; RS0, i# j, iij=L..[n/2] .1
then the BLUE (and the BLIE ) of the common scale parameter G is non-
negative.

Proof: Under (4.1) the positive definite matrix H has non-positive off-diagonal
elements. Therefore from theorem 12.2.9 in Graybill(1969) it follows that the

positive definite matrix H “has all its elements non-negative, this shows that

H _1M > 0 component wise, and the assertion follows from expression (3.4).

5. ESTIMATION OF COMMON SCALE PARAMETER OF
NORMAL AND DOUBLE EXPONENTIAL DISTRIBUTIONS

In this section we consider a random sample of sizen; drawn from a normal
distribution with probability density function

1

(=)
L
fip,0)= ——e 2\ 9/ —co<x<oo,—00< fi<00,0>0

2rwo

and sample of size n, drawn from double exponential distribution with
probability density function

2

e

x—,u‘
c

1
folx,u,0)= —oco<x<oo for 1<n <5 ,1<n, <5
V20

and illustrate the method proposed in section 3 to estimate the common scale
parameter ¢ of the above two distributions by function of spacings of pooled
sample of observations. To obtain the estimators we have evaluated means,
variance and co variances of function of spacings of the combined sample ,by
using the means, variances and covariances of order statistics of the combined
sample consisting of observations drawn from standard normal distribution with
probability density function f;(x,0,])and standard double exponential

distribution with probability density function f5(x,0,1) for n=2(1)5 given in
sajeevkumar and Thomas(2005), and are presented in Table 1.
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[n/2]
The coefficients ¢j,cy,....c[2] of the BLUE L, = ) c;R;, (Var(L,)) and
i=1
[n/2]
the coefficients dy,d,  d[,/2]of the BLIE L; = Zd,-Ri, (MSE(L;)) have
i=1
been also evaluated and are presented in Table 2.From Table 1 ,it is noted that
all Cov(R,-*,R;) <0,for i#j and hence the BLUE and BLIE for o is

positive ,which is evident in Table 2.

Table 1: Expected value, Variances and co-variances of function of spacings
arising from Standard normal and double exponential distributions.

Sample | n; | n, | Choice of E(R,-*) Choice of Cov(R;k R*
size i for i,j for
(n) 1<i<[n/2] 1<i< j<[n/2]
2 1 1 1 2.20048 | 1,1 3.15720
1 2 1 1.63056 | 1,1 0.98402
2 1 1 1.66422 | 1,1 0.88264
4 1 3 1 1.47626 | 1,1 0.92948
2 1.02692 | 1,2 -0.04464
2,2 0.84008
2 2 1 1.47550 | 1,1 0.83992
2 1.08172 | 1,2 -0.07628
2,2 0.88256
3 1 1 1.47148 | 1,1 0.75402
1.13568 | 1,2 -0.11012
2,2 0.93376
5 1 4 1 142118 | 1,1 0.91860
0.84668 | 1,2 -0.01894
2,2 0.29218
2 3 1 1.40312 | 1,1 0.83306
0.88320 | 1,2 -0.03396
2,2 0.29750
3 2 1 1.38264 | 1,1 0.75080
0.91944 | 1,2 -0.04996
2,2 0.30422
4 1 1 1.36010 | 1,1 0.67176
0.95514 | 1,2 -0.06730
2,2 0.31268
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Table 2: Coefficients of the functions of spacings in the BLUE L, and BLIE
L, of o, 0 *Var(L,)and 0 >MSE(L;).

im- nl/2 nl/?2 -2
Sample | m | my | Bstime [ﬁ]c,- RIL - [ébi R | O Vi)
(n) i=1 i=1 o "MSE(L,
¢ /d; c,/d,

2 1 1 Ly 0.45445. 0.65203

L, 0.60532 0.39468

3 1 2 Ly 0.61329 0.37011

L, 0.70110 0.72987

2 1 Ly 0.60088 0.31869

L, 0.75833 0.24167

4 1 3 Ly 0.43648 0.34633 0.26434

L, 0.34522 0.27392 0.20907

2 2 Ly 0.43991 0.32440 0.23365

L, 0.35660 0.26296 0.18940

3 1 Ly 0.44583 0.30287 0.20579

L, 0.36974 0.25118 0.17067

5 1 4 Ly 0.33323 0.62174 0.20710

L, 0.27606 0.51507 0.17157

2 3 Ly 0.33903 0.59363 0.18692

L, 0.28564 0.50014 0.15749

3 2 Ly 0.34732 0.56532 0.16818

L, 0.29732 0.48393 0.14397

4 1 Ly 0.35836 0.53667 0.15044

L, 0.31150 0.46650 0.13077

Remark: To compare the efficiency of our estimator L;; we can take the
BLUE 0'*:§U1+(1—5)U2 of o based on Ujand U, , where U, is the
Lloyd’s BLUE of o based on a sample of size njarising from normal
distribution alone and U, is the Lloyd’s BLUE of o based on a sample of size
n, arising from double exponential distribution alone. Here again o is the
Var(U,)
Var(U) +Var(U,)

BLUE based on U; and U,,when 0= .The efficiency
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comparison of Ly relative to ¢ for n=2(1)5,ny,ny <5,n; +ny =5Sare given
in Sajeev Kumar and Thomas(2005). From Sajeev Kumar and Thomas (2005) it

is clear that Var(Ly ) is much less than variance of o
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