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ABSTRACT

The present paper analyses a transshipment problem under uncertain demand with
upper bounds restrictions on some or all routes. The objective is to maximize the
net expected revenue, i.e., the total expected revenue minus the transportation and
transshipment costs. The stochastic transshipment problem is reduced to an
equivalent deterministic transportation problem for which an algorithm is
developed and numerically illustrated.

1. INTRODUCTION

In a transportation problem, shipments are allowed only between source-sink
pairs. In many applications, this assumption is too strong. For example, it is
often the case that shipments may be allowed between sources and between
sinks. Moreover, there may also exist points through which units of a product
can be transshipped from a source to a sink. Models with these additional
features are called transshipment problems. Interestingly, it turns out that any
given transshipment problem can be converted easily into an equivalent
transportation problem. The availability of such a conversion procedure
significantly broadens the applicability of our algorithm for solving
transportation problems. In this paper, the transshipment problem [Orden
(1956)] is considered, treating the demands as a discrete random. variable. The
purpose of this paper is to study the stochastic transshipment problem (STSP)
with upper bounds under prohibited routes. For dealing with uncertainty of
demands, we have used the technique by Ferguson and Dantzig (1956) and
Garvin (1963). An algorithm is developed in which additional upper bounds on
the route capacities are imposed; the upper bound represents the upper limits on
the amount that can be shipped over any given route

2.  NOTATIONS AND THE FORMULATION OF THE PROBLEM

We consider a transshipment problem with m sources and » sinks numbered as
1,2,--,m and n sinks numbered as m+1,m+2,---,m+n.

Let
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a; : the quantity available at source i =1,2,---,m

b : the quantity demanded at sink j=m+1,m+2,---,m+n
x;; + the quantity shipped from station i to j (i,j=1,2,---,m+n)
c;j : the per unit shipment cost from station i to j (i,j=1,2,---,m+n)

u; : quantity transshipped at the station i (i =1,2,---,m +n)

¢, : per unit transshipment cost (including unloading, reloading, and storage
etc.) at the station i (i =1,2,---,m+n).

The problem is to determine x, so as to minimize the total cost of transportation

and transshipment. It may be mathematically stated as under:

Problem P;: Find Xj; SO as to

o m+n*m+n* m+n

Minimize f = Z Z CijX + Zci”i - 2.1
=l j=I i=1

subject to
m+n* Cll'+141' i=1,2,---,m
Yoty = e 2.2)
75 u; i=m+1,---om+n
mtn u; j=L2,---,m .
D xy= 4 v (23)
i1 j+uj Jj=m+l,---,m+n
x;; 20 forall i and j (2.4)

m+n

Z * indicates that the term j =i is excluded from the sum. The constraints
J=1
(2.2) implies that the total quantity that leaves the source 7 (=1,2,---,m) is equal

to the quantity available plus the quantity transshipped and the total quantity that
leaves the sink i (=m+1,m+2,---,m +n) is equal to the quantity transshipped.

Similarly constraints (2.3) implies that the total quantity that arrives at a source
i (=1,2,---,m) is equal to the quantity that source transships and the total

arriving at a sink is equal to the demand at that sink plus the quantity that the
sink transships. Constraints (2.4) are the usual nonnegative restrictions. Here u;

are unknown, so we impose an upper bound , (say), on the amount that can be
transshipped at any point, so that

ui:uo—x”-, i=],2,"',m, (25)




A capacitated stochastic linear transshipment problem 95

where x, is a nonnegative slack. After substituting (2.5) in (2.1) to (2.3) and on
simplifying the original transshipment problem P, is reduced to the following
genuine transportation type linear programming problem.

Problem P;:

m+nm+n m+n
Minimize f= ) > c;x;+ D c
=1 j=I i=1
subject to
g aj+u, i=1,2,,m :
x,/ = i | " (26)
= U i=m+l,m+n
mtn u j=12,-.m
0 9:<9 (]
xij:{d-+u f=m+1,,m+n =
i=l g i
x; 20, _ (2.8)

where ¢; =-c;, and the asterisk (*) on the summations has now been
disappeared. As u; 20, we must have x; <uy, which is guaranteed by
equations (2.6) — (2.7), because any x; will always appear in one equation that
has uq on the right hand side. Here, the upper bound u, can interpreted as-the -

size of a fictitious stockpile at each source and sink which is. large enough to-
take care of all transshipments. Assume initially a value for u, which is

sufficiently large to ensure that all x;; will be in the optimal basis. Such a value

can be easily found as the volume of goods transshipped at any point cannot
exceed the total volume of goods produced (or received). Hence, set,

m ‘
uy = Z a; (2.9)
=]

Which ensures that u; is not limiting. The unused stockpile at the
stationi =1,2,---,m + n, if any, will be absorbed in the slack x;;.

3. PROBLEM REFORMULATION UNDER STOCHASTIC
ENVIRONMENT
So far we have treated the demands b, as if they are fixed constraints. However,
we assume b; as independent discrete random variables with known probability

distributions. To take care of the randomness of demands, instead of minimizing
the total cost, we take our objective as the maximization of the net expected
revenue, the net expected revenue being defined as total expected revenue minus
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loss in transshipment. Let s ; be the selling price of the product shipped to sink
J - We also introduce the upper bounds d;; that represents the upper limit on the

amount that can be shipped over the route (7, /). The objective function can,
therefore be written as:

m+nm+n m+n m+n

]T]inf = Z ZC’]Y’/+ZZIUO - ij(slﬂyj)
Yy i=l j=I i=l J=I
m+n m+nm+n m+n
ormaxZ = 3 fi(s;y;)- > 2 Cy¥ = Dty
.\'(-/v j:| i=1 /:] i=1

where f(s;,y /) is an unknown function that describes the expected revenue

from destination ; if a total of ¥ unitis shipped to this destination.

m+n

The third term on the right hand viz. Zci u is a constant and therefore can be
i=1

simply ignored. So our problem now becomes.

m-n m+nm+n
Problem Ps: maxZ =} f;(s;,y;)- Y. D_cjjx;; + constant (3.1
5 = i=t L
Subject to  constraints (2.6) and (2.7) 3.2)

4. THE EQUIVALENT DETERMINISTIC PROBLEM
Let the demand b ;'s at various destinations be independent random variables

and the probability distribution of b; (j=1,2,--,n) be in increasing order as:

Demand b, by < byj < : bH_/ j

p(b; =bpy;) = pp; Pl P2 PH,j

p(bj-Zb/U-) fH/-jszjj

H_/' H./
fj =D Py =D P
h=I1 h=2

To determine the function fi(s;,y;) note thaty j» the net quantity shipped to
sink j, can be any amount between the lowest value ; and the highest value

dH/_j in the probability distribution of the demand by (j=1,2,-,n).
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If 0<y; <b;. then each of the y; units shall be absorbed with probability

1;(=1). Hence, the expected revenue is = Sty -

If b; <y, <b,;, then each unit upto b, ; shall be absorbed with probability i
and each of the additional units (y i - b i) shall be absorbed with probability

tzjo

Hence, the expected revenue is = Sitbrj+sit; (v = b))
So, in general, if by; < y; <by,,,;, then the expected revenue is
sjitbij 12 (B =byj) 4+t (v = by}

Let us now break y, into incremental units Yy (h=12,---,H;) as:

Yi=Nj+Xej*tet Vit tYH ) _ 4.1
OSylijlj =M]j
T s L S 1 (42)
O0<yy ;<bhj-by ., =My, )

Relation (4.1) makes physical sense only if there exists some 4 = A ; (say) such
that all intervals below the ; —th interval are filled to capacity and all intervals

above it are empty i.e.

=My (h=1,2,,h;=1)
i < My (h="h)) | 4.3)
yl’lj=0 (h=hj+l,,Hj)

Assuming for the time being that the conditions (4.3) hold, the total expected
revenue from sink ; is:

H;
fj(sj’yj)zzsjthjyhj 4.4)
 h=1
Substituting the value of f; (s;,y;) from (4.4) in (3.1) and treating both x; and
yy; as decision variables, the deterministic equivalent to Problem P;, is given as
Problem P,.
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Problem P,
m+n / m+nm+n
Max Z Z Wb~ D 2% (4.5)
: = l l _/=l
where  (Fj; =sty;).
Subject to constraints (2.6) and (2.7a) (4.6)
m+n H/
Zx,j thj =uy, j=m+l, +n 4.7)
i=1 h=1
Xjjs Yy 20 Vi, j,h) 4.8)
X < d Vi, }) 4.9)
Yij < My (¥ j:h) (4.10)

and subject to the additional stipulation that the constraints (4.3) are also
satisfied.

Fortunately, it turns out that (4.3) do not restrict our choice of optimum solution
in any way. This can be handled by the theorem as given by Javaid et al. (1998).

5.  PRELIMINARIES TO THE SOLUTION OF PROBLEM P,

It is assumed that the set of all feasible solutions of Problem P, is regular
(i.e. non- empty and bounded) and that the denominator of the objective
function is positive for all feasible solution, Bela Martos (1968) and Cooper
(1962).

Problem P, is a transportation type linear fractional programming problem
with upper bound restrictions on some variables, therefore its global
maximum may exist/exists at a basic feasible solution of its constraints,
Swarup (1970)

We shall, hereinafter, call the constraints (4.6) through (4.8) as the original
system and the constraints (4.6) through (4.10) as the capacitated system.

As none of the constraints in the original system is redundant, a basic
feasible solution to the original system shall contain (m+n) basic variables.
For the capacitated system also, a basic feasible solution shall contain (m-+n)
basic variables and the same may be found by working on the original
system provided that some of the non-basic variables are allowed to take
their upper bound values, Swarup (1970), Garwin (1963).

The special structure of Problem Py, permits us to arrange it into an array as
shown in Table (5.1).
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Table 5.1: Special Structure of Problem P,

Xn dII Xml X1 m+l dlm+l X1 m+n d1m+n
d
> £ a+u,
O Ci m+1 Cl m+n
Cimi
Xml dm 1 am+u
Cinl | soe | eowsven | sveenss | oeesf eeveees iy
Xm+11 Am+11 POOR A nos . oonooos o bl|l e S RS Uy
Cm+1 1
Xm+nl dm+nl DCORE C GO Xm+nm+1 dm+nm+| oo | Xmtnm+1 dm+nm+n Uo
Cm+n m+!
Cmitn 1
2,
o | 7
Wi
yImH Mlm+l
Fl m+1
to to

In the above table, there are (m+n)rows in columns j=12,---,m and
(m+n+H) rows in columns j=m+1,---,m+n. Here H =max.H ;, so that
there shall be some empty boxes near the bottom of the table in
columns j = m +1,---,m + n. These empty boxes shall be crossed out.

Absence of the row totals for yy;'s in the table indicates that there are no row
equations for yj, variables. Besides, to obtain the column equations (4.8), each
yp; has to be multiplied by (~1). We have omitted (1) from y,; boxes for

convenience.
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6. INITIAL BASIC FEASIBLE SOLUTION ANb OPTIMALITY
CRITERIA

To start with, we fix the demands b;'s approximately equal to their expected

values such that

m+n m m+n m
2bj=2dyand D b;=3a
J=m+l i=1 J=m+l =1

and also such that for all j except j = j*, cach b; falls at the upper end of one

of the intervals yj,; into which b; has been divided, i.e.,

h

/
bj =2 .My,
h=1

for some h'j < H; and forall j except ;= j* (the b; can always be so chosen
that it is done).

With these fixed demands the upper portion of the Table 5.1 resembles a
(m+n)x(m+ n)standard transportation problem for which an initial basic

feasible solution with {2(m + 1)1} basic variables may be obtained as follows.

Ignore the upper bounds on x;;’s and write down the basic feasible solution by

the North-West Corner Rule or any other method for standard transportation. If
this solution satisfies the upper bound constraints, we hit the target. If it violates
these constraints, however, then we divide the basic variables into two groups.

a) the infeasible variables which violate their upper bounds and
b) the feasible variables which do not violate them.

Now, we discard temporarily the upper bounds on the infeasible variables and
replace the original objective function by one that minimizes the sum of the
infeasible variables. The existing solution now acts as the initial basic feasible
solution for the artificial problem we have just created, and we begin the
iterations, keeping in mind the upper bounds on the feasible variables.

As we proceed, some infeasible variables will increase while others will
decrease, but their general level decreases because we are decreasing their sum.
At certain iteration, as soon as some of the originally infeasible variables dip
below or become equal to their upper bounds, these variables join the group of
feasible variables, become upper bounded and are removed from the objective
function. We continue this till

a) all the infeasible variables disappear or

b) the objective function cannot be further improved while some infeasible
variables still remain.
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The later indicates that no feasible solution of the capacitated system exists
while the former indicates that a basic feasible solution has been found.

After a basic feasible solution with {2(m +n)—1} variables has been found for

the transportation problem (represented in the upper portion of Table (5.1)), we
enter in each column of the lower portion of the Table (5.1), non basic yj,’s at

their upper bounds in turn 4 =1.2.... until we have entered enough non basic
Vi SO that their sum over h is equal to b; (fixed earlier).

Obviously, we shall never have to enter y,; below its upper bound except in
column ;= j*, where the last nonzero entry will be Ypt S M/y.* . This last entry

and the {2(m + n) - I} basic x;; found earlier, constitute the required initial basic

feasible solution with 2(m + n) basic variables.

In case, the last non zero entry in column j* is also at its upper bound, then we
take the last yy,; entry of any column as or 2(m + n) —th basic variable.

Let the simplex multipliers corresponding to the objective function Z (Problem
P4) be u; and v Vi, j=12,...m+n).

Thése are determined by solving the following equations.

ciy +u; +v; =0 forbasic x;;

; 1o X (7.1)
Fj; —v; =0 for basic y;

i

These are 2(m + n) linear equations in as many unknowns u; and v, and can be

easily solved.

Let the relative cost coefficients corresponding to the variables x;; and yj; be
Cjj and Fj; .

These are determined by solving the following equations.

i

Cjj=u; +v;—c;  fornon basic x;; 5
Fyy =My —v; for non basic yj; .

For a given b.f..s. (x;;, ), the value of Z of Problem Py is:

m+n m+n m+n m-+n

II1+I’1H/
g9 ZF/;jyhj—z 7 Chay+ Zu,(a,»+uo)+ Z"j”o LHT3)
Jj=1 h=1 i=1 =

i=l j=I
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But, the relative cost coefficients for basic variables and the values of the non
basic x;; are zero. As regards the values of non basic Yy 's-some are zero and

the others at their upper bounds. Hence,

m+n * H/ * , m+n *m+n * , m-+n m+n
Z=3 3 RM,->"y Ciixy +3 D uia; +u,)+ Y Vligp )
Jj=1 h=l i=l  j=1 i=l Jj=1

Where. Z " indicates the sum over those non basic Ypj Which are at their upper

bounds.

Differentiating (7.3) partially with respect to non basic x; and yj;, we get,

o2 =-Cj; and
oz ;
==l

OVhj

We observe that the value of Z can be improved in two possible ways:
e firstly by increasing the non-basic x;; (or yp;) whose Cj; (or Fj; ) are
positive.
e secondly by decreasing those non-basic x;; (or yp;) whose C}j- (or Fj;)
are negative.

Thus a basic feasible solution is optimum iff

C,fj <0 (Y non basic xjj at zerolevel)

Cij 2 0 (V non basic x; at upper bounds) -
Fpi <0 (V non basic y,, at zero level)

F,;, >0 (V¥ non basic Y at upper bounds)

If any of the optimality criteria (7.5) is violated, the current solution can be
improved. The non-basic variable which violates (7.5) most severely is selected
to enter the basis. The values of the new basic variables are found in the usual
manner by applying @ -adjustments. It should, however, be kept in mind that the

coefficient of each Yy in the column equations (4.7) is (-1).

The variable to leave the basis is the one that becomes either zero or equal to its
upper bound. If two or more basic variables reach zero or their upper bounds
simultaneously then only one of them becomes nonbasic. Should it happen that
the entering variable itself attains upper or lower bound (zero) without
simultaneously making any of the basic variables zero or equal to its upper
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bounds, the set of basic variables remains unaltered; only their values are
changed to allow the so-called entering variable to be fixed at its upper or lower
bound.

7.  FINITENESS

The process is bound to terminate with a finite number of iterations as it
involves movement from one basic feasible solution to another basic feasible
solution, which is finite in number.

8. NUMERICAL EXAMPLE

Consider the stochastic Transportation problem involving Transshipment with 3
origins and 2 destinations in which shipping charges, i.e.,the costs from origin to
origin, destination to destination and origin to destinations are denoted by d;;

and cjj and are given in each boxes in Table (8.1), Table (8.2) to Table (8.3)
respectively. The probability distributions of the random demands b; (1 = 1,2)
are given in Table (8.5) along with the computed values of Fj; and My, : The
initial basic feasible solution by the North-West Corner is given in Table (8.4).

Table (8.1): Transportation from source to sink.

A B a;
9 4

I . . 5
6 2

1 5 - 6
8 3

s 10 5

Table (8.2): Transshipment from sink to sink.

A B
A 21 6
5
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Table (8.3): Transshipment from source to source.
|

11

111

11

[11

21 3 4
0 8 3
3 21 6
8 S
4 6 21
3 0

Table (8.4): IBF Solution by North-West Corner Rule

A B a;
; L10
10
9 4
|2 3
5
6 2
111 6
6
8 3
b 12 9
Table (8.5):Assumed distribution of bj
J bj Phj t/‘lj F/’lj :sjthj M/’lj
9 0.2 1.0 -10 9
1 12 0.6 0.8 -7
16 0.2 0.2 -2 S
2 7 0.2 1.0 -5 7
10 0.8 0.8 -4 3

Iteration-1

Step 1. In order to obtain initial basic feasible solution we fix the demands at
by =12and by =9, and then determine a starting basic feasible solution

to the (3x2) standard transportation problem represented above the

shaded region in Table (8.4), by the North-West corner Rule.
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Then a standard transshipment problem can be formed (ignoring the

upper bounds). We get,

x”=2l, .7614210, x|5=2 X957 =21,
x24=43 )C25=|, X33=21, X35=6,
Xqq =21, Xs5 =21

To obtain the initial basic feasible solution to the deterministic
equivalent transportation problem, we assign Yy entries at their upper

bounds (as far as possible) so that the column equations are satisfied.
This solution violates the upper bound restrictions as x4, <8

To obtain a basic feasible solution to the deterministic capacitated
transshipment problem, we temporarily treat all x;’s, except the

infeasible variable x4, as upper bounded and apply the usual
transportation routine to minimize the sum of infeasible variable, i.e., to
minimize x4, till the infeasibility of x,, is removed. The solution so

obtained is:
Xir =21, x4 =8, x15=2, xpp =21,
X4 =4, x5 =1, %3y =21 *35, =8
X4q =21, X55 =21

For the capacitated transshipment problem x,4 =4 is non basic variable
at its upper bound.

(< My,).

This provides the required initial basic feasible solution with x;, x5,

Weget y11=9, y21=3, y12=7 and y,; =2

X5, X35 and y,; as the basic variables.

Step 2. The simplex multipliers (u;»v;) and the relative cost coefficients are

determined. These values are also recorded in the following working
Table (8.6).

Step 3. The values of Z are obtained as under
m+n *m+n m+n m+n m+n m+n
zZ=Y"Y "FmMy->" Z =3 Yuila; +1)+ Yovjt,
=1 j=1 =l j=I i=1 j=1

= {7(9) + 1(7) + (-2)3 + 0(4)} — {[31(0) + 26(-2) + 27(-1) + 21(-9) +
21(-4)] +21(0) + 21(2) + 21(1) + 21(9) + 21(4)}
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Step 4 .For the non-basic variables, the values of Cj;and Fy; are calculated and
found that F3; violates the optimality criteria.
Fy=7-9==-2

Obviously the current solution is not optimum and may further
improved.

Step 5.Adding & to y,, we are led to the @ —adjustments as shown in Table

(8.6). Here, the maximum possible value of & is 6 =1.

Table (8.6) Deterministic Version of Problem P,

a;
20 o
31
0 20 el 6 |0 S w23
[ 20) 3 | 2]
26
2. 410 0 |3 2 |0 Al
20) 6]
27
4 6 |3 2 =0 ()2 SIS S ()R =
20]
21
0 5 4 RS () ()58 S e |
20
21
Dz i B ] i Dl BB S ASIROT 0
2] 21 21
21 21

After the Third iteration the optimal solution has been attained as:
Zopr, =28
X1]=21, X14 = XI5 = 2
X24 :4, X25—‘1.. i\’?‘j‘ :2]. X35 26,
X44:21, .\'55 ’21
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