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THE PRESENCE OF OUTLIERS IN RIGHT CENSORED SAMPLES 
 

 
U. J. Dixit and M. Jabbari Nooghabi 

 

 
For homogenous data, Wilks, Gnanadesikan and Huyett (1962) derived the 

maximum likelihood estimator based on order statistics ),...,,( )()2()1( nXXX , 

)( nr < . Here we deal with the estimation of these parameters in the case of right 

censored samples for non-homogeneous data. 

 
 

 

1. INTRODUCTION 

Many authors have considered the problem of estimation of the parameters of 

gamma distribution. For gamma distribution considerable amount of literature is 

available on estimation of shape p  and scaleσ . Bowman and Shenton (1987) 

give references to most of papers in this area. There are many situations in 

which it is reasonable to assume that the items may not be homogenous and 

hence the assumption of independent identically distributed random variable 

may be unrealistic and then the model may have to be modified suitably. Gather 

and Kale (1988) had considered the maximum likelihood estimator in the 

presence of k  outliers and Dixit (1989) considered the estimation of the 

parameters of gamma distribution in the presence of k  outliers. Dixit (1991) 

considered the estimation of power of the scale parameter of the gamma 

distribution in the presence of k  outliers Many authors have considered the 

problem of estimation of the mean of an exponential distribution in the presence 

of an outlying observation having higher expected values than the others. We 

refer Kale and Sinha (1971), Joshi (1972), Chikkagoudar and Kunchar (1980), 

Rauhut (1982), Dixit and Nasiri (2001) and Dixit, Ali and Woo (2003). Barnett 
and Lewis (1984, p. 146) remarked that outliers in gamma distribution with an 

arbitrary shape parameter arise with skew distributed data, for which a gamma 

distribution is often a useful pragmatic model. Outliers in gamma distribution 

arise in any context where Poisson processes are appropriate basic models, for 

example, in studying traffic flow, failures of electronic equipment, biological 

aggregation or even death from horse kicks. 

Suppose experimental animals are subjected to massive dose of radiation and 

their survival times are recorded. During the administering of radiation dose, it 
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is known that exactly k  animals received a dose of radiation far in excess to 

others. It may then be assumed that the expected survival times of the overdosed 

animals are different than the other )( kn −  animals. Gross, Hunt and Odeh 

(1986) have considered the above example when 1=k . For definiteness we 

assume that ),...,,( 21 nXXX  contains exactly k  (known), the number of outliers 

but the outliers themselves are not known whose expected life is large (or small) 
as compared to the expected life of rest of them. We assume that the random 

variables ),...,,( 21 nXXX  are such that k  of them are distributed as: 
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where 0>x , 0>σ , 0>+ bp , 0≠b  and the remaining )( kn −  random 
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where 0>x , 0>σ  and 0>p . 

For homogenous case Wilk, Gnanadesiken and Huyett (1962) derived the 

maximum likelihood estimates of p  and σ  based on order statistics 

),...,,( )()2()1( nXXX , )( nr < from (1). 

2. JOINT DISTRIBUTION OF ),...,,( )()2()1( rXXX  WITH k  

OUTLIERS 

Suppose a random sample of size n  (known) is taken from the outlier model are 

represented in (1) and (2). Suppose now that the observations are available only 

for the −r th smallest values of this random sample. Let these r  order statistics 

be denoted by )()2()1( ,...,, rXXX , where )()2()1( ...0 rXXX ≤≤≤≤ . 

The problem considered is 

Given the values of )()2()1( ,...,, rXXX , n  and k  to find the maximum 

likelihood estimate of p , σ  and b . The joint distribution of the order statistics 

)()2()1( ,...,, rXXX  in a sample of size n  is such that k  of them is distributed as 

)(xG  (cumulative distribution function )(CDF  of g ) and remaining )( kn −  is 

distributed as )(xF  CDF(  of )f . Out of the first r  order statistics, let jA  be 

the event that j  of them are )(xG  where j  is ),(),0( rkMinjknrMax ≤≤+− . 

The contribution of jA  to the joint probability density function (pdf) of 

)()2()1( ,...,, rXXX  is 
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where 
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For brevity )()2()1( ,...,, rxxx  is taken as rxxx ,...,, 21 .  

In the Appendix it had been shown that 

1...),...,,(... 2121
1 2 1

=∫ ∫ ∫ ∫
∞

∞−

∞ ∞ ∞

− −
rx x x r dxdxdxxxxf

r r

. 

Now, the likelihood function of )()2()1( ,...,, rXXX  with (1) and (2) is given as: 
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which is the joint likelihood function of ),...,,( )()2()1( rXXX  in the 

homogenous case. 

3. MAXIMUM LIKELIHOOD EQUATIONS 

The log likelihood function obtained from (5) is 
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Similarly, one can write the above expressions for any value of )( nkk < . 

The maximum likelihood estimates of p , b  and ρ  are then defined by the 

solution of the simultaneous equations (7), (8) and (9). 

4. THE SOLUTIONS OF THE MAXIMUM LIKELIHOOD 

EQUATION 

An iterative procedure was used in obtaining the necessary roots. Let 

),,( ρbpRR = , ),,( ρbpSS =  and ),,( ρbpZZ = to represent the equations (6), 

(7) and (8) respectively. 

The functions ),,( ρbpR , ),,( ρbpS  and ),,( ρbpZ  involve )( pΓ , )( pΨ , 
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The numerical approximations are same as given by Wilk, Gnanadesikan and 

Huyett (1962). 

Let ),,( ρbp  be sufficiently close to ),,( 000 ρbp . Then following will be the 

reasonable approximations. 

Hence, 
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Thus, suppose that values ),...,,( 121 rxxx  are given and the values of p , b  and 
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),,( 000000 ρbpSS =  and ),,( 000000 ρbpZZ =  are close to R , S  and Z , 

respectively. Further 1p , 1b  and 1ρ  are close to 0p , 0b  and 0ρ  respectively 

are selected and the corresponding 

),,,(),,,(),,,( 100001010010001100 ρρρ bpRRbpRRbpRR ===  

),,,(),,,(),,,( 100001010010001100 ρρρ bpSSbpSSbpSS ===  

),,,(),,,(),,,( 100001010010001100 ρρρ bpZZbpZZbpZZ ===  

are computed. The partial derivatives here can themselves be approximated by 

suitable divided differences. Therefore 

,,,
01

000001

01

000010

01

000100

ρρρ −

−
=

∇

∇

−

−
=

∇

∇

−

−
=

∇

∇ RRR

bb

RR

b

R

pp

RR

p

R
     (32a) 



Estimation of parameters of gamma distribution in the presence of outliers ….. 9

,,,
01

000001

01

000010

01

000100

ρρρ −

−
=

∇

∇

−

−
=

∇

∇

−

−
=

∇

∇ SSS

bb

SS

b

S

pp

SS

p

S
      (32b) 

.,,
01

000001

01

000010

01

000100

ρρρ −

−
=

∇

∇

−

−
=

∇

∇

−

−
=

∇

∇ ZZZ

bb

ZZ

b

Z

pp

ZZ

p

Z
     (32c) 

Then the solution of three simultaneous linear equations 
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will yield correction A , B  and C  such that one might expect App += 0
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Note: If k is unknown then k  can be selected by evaluating the likelihood 

function for different values of k  and choosing the one that maximizes the 

likelihood. 

5. APPENDIX 

The joint distribution of ),...,,( )()2()1( rXXX  is given as: 
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,       (37) 

where ∞<≤≤≤≤∞− )()2()1( ... rxxx  and )!(!),(),( jrjjkCjrknCa j −−−= ,  

when 0=j  then ∑ ∏ =
=j t

t

iii

j

t i

i

xf

xg

,...,, 1 )(

)(

21

1
)(

)(
. 
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To prove that 

∫ ∫ ∏∫ ∫ ∫
∞

∞−

∞

=

∞ ∞ ∞
=

− −1 )2( )2( )1(
1

)(21 1),...,,(...
x

r

i

ix x x r dxxxxf
r r

,         (38) 

let 
r
jB  be the event that there are j  out of r  order statistics which belong to 

)(xg  then )(rx  may be on )(xg  or it may not be on )(xg . The contribution of 

these two events is as: 

)(
,

)(
1,

r
jf

r
jg

r
j LLL += − , 

where 
)(

1,
r

jgL −  is the sum corresponding to the −r th observation on )(xg  and 

)1( −j  of )(xg 's are less than )(rx  and 
)(
,

r
jf

L  is the sum corresponding to the 

−r th observation on )(xf  and j  of )(xg  are less than )(rx . Now 

∑ ∫∑ ∫∑ ∫
=

∞

=

∞

−
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∞

−−−

+=
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dxLdxLdxL
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,

0
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0
)(
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[ ] [ ] jk
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r
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− −−= )(1)(1)( )()()(
)(

1,
 

where )( knm −= . 

Therefore 
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
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k

j

k

j
x r

r
jf

r
j

r

dxLL  



Estimation of parameters of gamma distribution in the presence of outliers ….. 11

and 

∑ ∑ ∫∑ ∫∑ ∫
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∞−

=
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+













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−
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r

. 

Hence 
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0
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k
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Similarly 
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∞
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− −−− )1()1(
1
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∞
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6. AN EXAMPLE 

The following is the life distribution (in units of 100  hours) of 25  electronic 

tubes. But we could observe that only 20  electronic tubes due to insufficient 

power supply. Further, it is also observe that some tubes (say one or two) are of 

different quality. This data follows a gamma distribution. 

0.1415   0.5937   2.3467   3.1356   3.5681 

0.3484   1.1045   2.4651   3.2259   3.7287 

0.3994   1.7323   2.6155   3.4177   9.2817 

0.4174   1.8348   2.7425   3.5551   9.3208 

Then form the above data 19.0=R ,  539.35=S  and 57.2=Z . Then for 1=k , 

20=r , *
p , *b  and *ρ  from (33), (34) and (35) are 2164.1 , 2212.0  and 

0485.4 , respectively. Next for 2=k , 20=r , *p , *b  and *ρ  are 2238.1 , 

1869.0  and 0747.4 , respectively. 
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