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ABSTRACT 

Using the multimodal (for certain values of the parameters) generalized 

logistic distribution for a random variable Z , defined earlier by Rathie and 

Swamee (2006), we define a new skew generalized logistic distribution 

with four parameters a , b , p  and c . Some properties, such as moments 

and distribution of 
2Z , are obtained. This distribution is invertible for 

1= ±c . For certain values of the parameters a , b  and p , and any c , this 

distribution approximates very well the skew normal distribution. As 

possible applications, the skew generalized logistic distribution is applied 

to analyse annual precipitation data of Los Angeles City and the 

Environmental Performance Index (2010). 

 

1. INTRODUCTION 

In this section, we include some known results which will be useful in the 

subsequent sections of this paper. 

1.1  GENERALIZED LOGISTIC DISTRIBUTION 

We define the following symmetric generalized logistic density function and its 

cumulative distribution function studied recently by Rathie et al. (2006,2008) 

and Rathie (2011).  
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where ℜ∈z , 0>,, pba . 

For the values 1.59413=a , 0.07443=b  and 1.939=p , this distribution 

approximates very well the normal distribution with a maximum error of 4. 
410−  at 0=z  for the density function and 57.757.10−  at 2.81=z  for the 
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distribution function. It is also interesting to note that the above distribution, for 

certain values of ba,  and p , can be bimodal or multimodal. 

1.2  GENERATION OF ASYMMETRIC DISTRIBUTIONS 

In this sub-section, we mention Azzalini's formula and the corresponding result 

for skew normal distribution. 

1.2.1 AZZALINI'S FORMULA 

We can generate many asymmetric distributions )(zh  by  

))(()(2=)( zwGzgzh              (3) 

where )(zg  is a symmetric density function about the origin, )(zG  is a 

cumulative distribution function of a symmetric density function about the 

origin, and )(zw  is an odd function. 

Introducing a parameter of position ℜ∈µ  and a scale parameter 0>σ , one 

may generalize (3), with czzw =)( , in the following manner:  
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1.2.2  SKEW NORMAL 

For the normal distribution )1,0(N , we can form the skew-normal distribution 

))(( zSn , with czzw =)( , ℜ∈c , ℜ∈z  : 

)()(2=)( czzzSn Φφ   
           (5) 

where )(zφ  is the probability density function of the standard normal 

distribution and )(zΦ  its cumulative distribution function. 

Skew normal distribution can not be expressed in simple functions as we can not 

do the explicit calculation of )(czΦ . We will use the functions given in (1) and 

(2) to propose a good approximation for the skew-normal distribution. This 

approximate density function, can be written in simpler forms than the 

traditional skew normal density function and its distribution is invertible in some 

cases. 

Using (1), (2) and (3), we define a new skew generalized logistic distribution 

with four parameters. This distribution is invertible for 1= ±c . For certain 

values of the parameters a , b  and p , and any c , this distribution approximates 

very well the skew normal distribution. As possible applications, the skew 

generalized logistic distribution is applied to analyse annual precipitation data of 

Los Angeles City and the Environmental Performance Index (2010). 
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2. SKEW GENERALIZED LOGISTIC DISTRIBUTION 

In the next sub-section, we define a new skew generalized logistic distribution 

using (1) and (2) and obtain some properties. 

2.1 GENERALIZED LOGISTIC DISTRIBUTION IN AZZALINI'S 

FORMULA 

To define a new skew generalized logistic distribution we let )(=)( zfzg  

(Eq.(1)), and )(=)( zFzG  (2), in (3), thus 
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Generalizing the skew generalized logistic distribution with a position parameter 

ℜ∈µ  and a scale parameter 0>σ , we get  
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For the values of 1.59413=a , 0.07443=b  and 1.939=p  given in section 1.1, 

the errors of the normal approximation are very small implying very small errors 

for the skew normal approximation as well. This approach can be very useful 

from computational point of view as it is written in a compact form. 

Calculations of quantiles for example can be made explicit in certain cases. 

Later in this work we will compare this distribution with skew normal 

distribution. 

This distribution is very versatile. In addition to finding a good approximation 

for the skew normal distribution, for some parameter values, one can produce a 

bimodal pattern or even heavy tails. 

2.2 MOMENTS 

Let us now calculate the moments of )(zh  given in (6).  
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using the identity )()(1 czFczF =−− . We get for even n ,  
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so the even moments are equal to the moments of symmetric distribution )(zf . 

These moments have been calculated by Rathie and Swamee (2006) and are 

given by:  
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where H function is defined in Braaksma (1964) or Mathai et al. (2010), see 
also Springer (1978) and Luke (1969) for several properties. For odd n , we get  
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The result of the second integral is the same as that given in (8), and for the first 
integral we will consider 0>c  and we will use the series,  
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with )]||([exp= p
czbaczy +−  and )]||([exp= p

zbazx +− , so that  

×++= ∫∫
∞∞

])(1[)()(
00

pnn
zpbazdxczFzfz 1)(1)(

0=
+−∑

∞
rr

r   

  
dzzcbacjzbzarz pj

j
p )])|(|([exp1)()]1)(([exp

0=
+−−++−× ∑

∞
  

    = ×+++− ∫∑∑
∞+∞∞

])(1[1)(1)(
00=0=

pnjr

jr
zpbazr  

 
dzcjcrbzcjraz

pp )]||1())1(([exp 1 ++−++−× +
 

    

])(11)[(1)(=

0=0=
pnn

jr

jr

JpbaJr +
+

∞∞

+++−∑∑        (12) 

where  

dzcjcrbzcjrazzJ
pp

)]||1([exp))]1(([exp=
1

0
++−++− +∞

∫
β

β   

= dzz
k

cjcrb
cjrazz

kp
kp

k

1)(
0=0 !

))||1((
))]1(([exp +∞∞ ++−

++− ∑∫
β   

11)(0=
))1((

1)1)((

!

))||1((
=

+++

∞

++

+++Γ++−
∑ kp

kp

k
cjra

kp

k

cjcrb

β

β
  













++++

++
++

+
−−

)1,1(

)1,1(

)||1(

))1((
)]1([=

1
1,1
1,1

1

pccjrb

cjra
Hcjra

p

p

β
β

       

(13) 

Thus, for odd n  and 0>c  we have  
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To calculate the moments for odd n  and 0<c  note that )( cSNX c −− ~  if cX  

is skew normal distributed with parameter c , so that  
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Thus the nth moment of )(zh  for 0<c  and n odd is  
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2.3 PARTICULAR CASE WHEN 1=C  

The particular case when 1=c  is very interesting because we can explicitly 

calculate the cumulative distribution function of the skew generalized logistic 

distribution and its inverse. 

Considering 1=c  in (6), with ℜ∈z , ba,  and p , we get  
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We easily obtain the cumulative distribution by making the substitution 

1})]|([exp{= ++− p
bzazu  and calculating the integral, thus we get  

21})]||([exp{=)( −++− p
zbazzH               (18) 

Equations (17), and (18) were discussed in Rathie et al.(2008). It was shown that 

for 59413.1=a , 07443.0=b , and 939.1=p , these equations are good 

approximations to skew-normal density and distribution functions, for the 

parameter 1=c . 

2.4 PARTICULAR CASE FOR C=-1 

Considering now that 1= −c  in (5) we can find the cumulative distribution 

function and its inverse corresponding to generalized logistic distribution. From 

(6) for 1= −c , we have  
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The cumulative distribution function is easily obtained from (19) and is given by 
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To calculate z  as a function of H , we use (20) and obtain  
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Using Lagrange's inversion expansion, we obtain  
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or  
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3. APPLICATIONS OF THE SKEW GENERALIZED LOGISTIC 
DISTRIBUTION 

3.1 ANNUAL PRECIPITATION DATA 

We have used the data of the annual precipitation (rain) in Los Angeles between 

1878 and 1993. This data was obtained from the web site 

http://www.weather.gov/ . We began our analysis by making the tests for white 

noise. These tests reveal that in fact this data has white noise, so we need to find 

its distribution. 

This data is very skewed and we adjusted the skew generalized logistic 

distribution )(zSna  with position and scale parameters (7) to the data. We 

approximated the parameters using the maximum likelihood method, using two 

decimal places of precision, by 1.57=â , 0.087=b̂ , 1.52=p̂ , 10.13=ĉ , 

6.38=µ̂  and 10.85=σ̂ . In Figure 1, one can see the fit of the skew generalized 

logistic distribution for the empirical distribution of the data and for the 

histogram of the data. 
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For this approach the mean square error between (7) and the empirical 

distribution is 80.00058901 , the maximum deviation is 0.0547488 and the 

average absolute deviation between (7) and the empirical distribution is 

0.0192187 . We used the Kolmogorov-Smirnov goodness of fit test to check the 

adjustment obtaining a p-value of 861308.0 , and then we concluded that we can 

not reject the hypothesis that this data follows the skew generalized logistic 

distribution. 

 

Figure 1: Adjusted skew generalized logistic distribution for the 

precipitation data: with the empirical distribution (left) and with the 

histogram (right). 
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3.2 ENVIRONMENTAL PERFORMANCE INDEX 

This application shows the versatility of the new distribution. Using the data of 

the environmental performance index (EPI) we show how the skew generalized 

logistic distribution (6) and (7) can fit bimodal patterns in the data. 

On the basis of 25  performance indicators tracked across ten policy categories 

covering both environmental public health and ecosystem vitality, the 2010 

Environmental Performance Index (EPI) ranked 163  countries. These indicators 

provide a gauge at a national government scale of how close countries are to 

established environmental policy goals. This description and the data can be 

found at http://epi.yale.edu/. 

The study of the statistical distribution of these data is very important to 

evaluate how the planet behaves in relation to environmental issues. Also, the 

study of the evolution of this distribution from year to year is essential to realize 

if the world is or is not evolving toward a more sustainable future. 

The skew generalized logistic distribution )(zSna  (7) proved to be a great 

option to fit this data because it allows a bimodal pattern and also fit well the 

skewness of the data. 

The estimated parameters, using the maximum likelihood method, are 

0.312=â , 0.787=b̂ , 0.497=p̂ , 0.656=ĉ , 53.036=µ̂  and 10.436=σ̂ . In 

Figure 2, one can see the fit of the skew generalized logistic distribution for the 

empirical distribution of the data and for the histogram of the data. 

 

Figures 2 and 3: Adjusted skew generalized logistic distribution for the 

EPI data: with the empirical distribution. 
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Figure 3: Adjusted skew generalized logistic distribution for the EPI 

data: with the histogram. 

For this approach the mean square error between (7) and the empirical 

distribution is 00034634.0 , the maximum deviation is 0452149.0  and the 

average absolute deviation between (7) and the empirical distribution is 

0146137.0 .  

We used the Kolmogorov-Smirnov goodness of fit test to check the adjustment 

obtaining a p-value of 89.0 , and then we concluded that we can not reject the 

hypothesis that this data follows the skew generalized logistic distribution. 

4. DISTRIBUTION OF 2X  

It is known that 2W , if W  is skew-normal distributed, is chi-square distributed 

with one degree of freedom. We will calculate the distribution of 2X  for X  

having distribution given by )(xh , defined by (17) with parameters 

1.59413=a , 0.07443=b  and 1.939=p . 

If 2= XZ  we have zx ±= , thus we get  
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This distribution approximates well the chi-square distribution with one degree 

of freedom. It is easy to find that the accumulative distribution is given by 
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Compared with chi-square distribution with one degree of freedom, this 

distribution has a maximum error of approximately 000156.0
 
at 7.9=z , as 

shown in Figure 3. 

 

Figure 4: Error between G(z) and the chi-square distribution 
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