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ABSTRACT 

In this paper, we have constructed designs with unequal block sizes for comparing 

test treatments with a control by using the method of cyclic shifts. These designs 

are also known as Balanced Treatment Incomplete Block Designs )(BTIBDs . An 

important feature of this method of construction is that the properties of a design 

can easily be obtained from off-diagonal elements of the concurrence matrix 

without constructing the actual blocks of the design. One representative case for 

such BTIBDs  with unequal block sizes 51 k  and 42 k  for 7v  is 

presented. 

 

1. INTRODUCTION 

Designs with unequal block sizes are likely to occur in practical situations 

especially when the experiments are large and the blocking of the experimental 

units is natural (Angelis and Moyssiadis, 1991). The need for using different 

block sizes in biological experiments was first noted by Pearce (1964). Different 

methods for the construction of such designs are available in literature. Balanced 

block designs with unequal replications were considered by Corsten (1962) and 

John (1964). Some methods for constructing block designs with unequal block 

sizes were given by Kulshreshtha et al. (1972) and Kageyama (1976, 1981). 

Kageyama and Tusji (1980a, 1980b) gave some useful results on the 

characterization of balanced block designs, and Kageyama (1980) gave further 

results for resolvable balanced block designs. 

As remarked by Kageyama (1976), with the advent of high speed computers 

block designs with unequal block sizes may be particularly useful in large 

experiments in industry and agriculture. Gupta (1989a) studied E-optimality of 

block design with varying replicates and unequal block sizes. Iqbal and Jones 

(1995) constructed variance-balanced designs using cyclic shifts with unequal 

block sizes. John et al. (1999) constructed resolvable designs with blocks of 

unequal sizes. Williams et al. (1999) gave some examples of block designs 

which are useful in plant and tree breeding trials, when blocks sizes are unequal. 

It is well known that the comparison of test treatments with a control treatment 

is an integral part of genetic and biological research. This situation also occurs 

in agronomy, chemistry, pathology, physiology and physics, where a new 

treatment (material) is compared with the other(s). After the introduction of such 
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designs by Hoblyn et al. (1954), many authors have extended work on BTIBDs . 

Bechhofer and Tamhane (1981), Majumdar (1996), Majumdar and Notz (1983), 

Cheng et al. (1988), Jacroux (1984, 1989), Hedayat and Majumdar (1984, 

1985), Hedayat et al. (1988), Stufken (1987), Ting and Notz (1988), Gupta 

(1989b) and Sinha (1992) considered comparing test treatments with a set of 

standard (control) treatments for equal blocks sizes. In literature Jacroux (1992) 

considered the problem of comparing   test treatments with a control using 

block designs, where 1b  blocks are of size 1k  and 2b  are of size 2k  )( 21 kk   

and Angelis and Moyssiadis (1991) considered A-optimal designs with unequal 

sizes for comparing test treatments with a control. In this paper, we have 

considered the construction of designs for comparing test treatments with a 

control when block are of unequal sizes using the method of cyclic shifts. 

Example 1:  Consider the situation in a BTIBD , where 4  treatments 

appear in 81 b  and 22 b  blocks, each of sizes 41 k  and 22 k  

respectively. The test treatments are replicated 51 r  times and are compared 

with control treatment, which is replicated 160 r  times. 
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In the above design, one control treatment is compared with four test treatments 

(1, 2, 3, 4). We see that the control treatment 0 appears with all the other test 

treatments within blocks an equal number of times. If we consider the test 

treatments only, we see that the test treatment 1 appears with test treatments 2 

and 4 two times in blocks of size 4 and once with treatment 3 in blocks of size 2.  

That is, the concurrences of treatment 1 with others treatments are (2, 0, 2) in 

blocks of size 4 and (0, 1, 0) in blocks of size 2.  To obtain variance-balanced 

designs, we have to consider weighted concurrences (discussed in section 3). 

Then we will divide the respective concurrences by their block sizes to obtain 

the weighted concurrences, which are in this case equal to (1 /2). Therefore, by 

considering this property and that each test treatment appears with the control 

treatment an equal number of times within each block size, we can construct the 

required designs. 

The organization of this paper is as follows. In Section 2, we have explored the 

relation between the concurrence matrix and cyclic shifts. The method of cyclic 

shifts used to construct unequal block sized BTIBDs  is given in Iqbal and Tahir 

(2008, 2009). In Section 3, we have presented a representative case for the 

construction of designs for comparing test treatments with a control when block 

are of unequal sizes. In Section 4, we gave some concluding remarks. 
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2. CYCLIC SHIFTS AND PROPERTIES OF BLOCK DESIGNS 

The standard setting for a block design is an integer triple setting with 

parameters (v, b, k) specifying that it is an arrangement of v treatments in b 

blocks, each of size k, where k < v. The conditions for a BIBD are that (i) each 

treatment has r replications, (ii) no treatment appears more than once in any 

block, and  (iii) all unordered pair of treatments appears exactly in   blocks, 

where )1/()1(  rkb  is often referred to as the concurrence parameter of a 

BIBD. 

Let ),,( kbvD  denote the class of all block designs for the setting ),,( kbv  

which are available in an experiment whose contrasts are estimable. Let 

)(N ijn ; vi ,,2,1   and bj ,,2,1   be the ( bv ) treatment-block 

incidence matrix associated with any design ),,( kbvDd  whose elements ijn  

signify the number of units in block j allocated to treatment i. The matrix, 

NN  , is referred to as concurrence matrix of design d, and its entries, the 

concurrences parameters are denoted by ij . For any equi-replicated block 

design, NN  , the treatment concurrence with diagonal elements are equal to r 

and the off-diagonal elements are equal to the number of times any pair of 

treatment occur together within blocks. In a balanced design, the off-diagonal 

entries of NN  are all equal to a constant,  , say, that is, the common 

replication for a BIBD  is r, and the common pairwise treatment concurrence is 

 . The Bose information matrix for estimating treatment contrasts using design 

d is 

 NKNRC  1
, 

where 
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C  is also known as C-matrix of the design, which determines the statistical 

properties of a BIBD. C  is symmetric and non-negative definite, with rank 

1v . 

We will now describe the method of cyclic shifts for constructing a design which 

has NN  matrix of any pre-specified form. Suppose that we want to construct a 

design which has a particular pattern of NN  , the entries of NN  are built up 

as follows. 
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Since NN   is a vv  matrix, having v diagonal elements equal to r and next to 

the diagonal there are 1v  off-diagonal elements. Next to these, we have 

further 2v  off-diagonal elements, and so on. 

We want to systematically convert some or all of the off-diagonal zeros into 

positive integers. For bv   and 2k , we can convert exactly v zeros into 1's. 

Suppose we convert the 1v  zeros next to the main diagonal into 1's and for the 

vth element we convert the last zero of the first row into 1. Then for 2r , 

2k , the concurrence matrix will be 
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where the columns represent the blocks. 

Now, instead of considering the elements next to the main diagonal, let us 

convert the elements in the next-but-one position to the main diagonal into 1's. 

Since, we have converted 2v  zeros into 1's, so we also have to convert the 

second last element of the first row and the last element of the second row into 

1's. That is 
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The corresponding design is 
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The conversion of the elements next to the main diagonal into 1's is named as 

'using shift 1' and the conversion of the elements in the next-but-one position is 

named as 'using shift 2' and so on. In general, for any value of k and bv  , we 

have to convert 2/)1( kvk  zeros into ones. So, when we convert the elements 

in the ith diagonal position next to the main diagonal, we call it 'using cyclic 

shift i' or 'using shift i’, 1,,2,1  vi  . However, we do not need to construct 

the NN  matrix directly because we can find its off-diagonal elements 

immediately from the shifts. 

For further understanding of this method, we again explain the method of cyclic 

shifts as follows. Let us start with a set of bv   blocks, each containing one 

plot. The treatments on these plots are respectively, 1,,1,0 v . By using a 

shift q, say, we mean adding a constant q (mod v) to each of the treatments. This 

then gives a design with 2k . In the previous two designs, we have used shifts 

11 q  and 22 q  respectively. 

For a design with vb 2  blocks, we can use the shifts, say 1q  and 2q , each 

separately to two sets of v plots. If 11 q  and 22 q , then 





































41100011

141100001

114110000

011411000

00014110

00011411

10001141

11000114













NN  

and the corresponding design will be 
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For a design with unequal block sizes 1k  and 2k , (where 1k  > 2k ), we can use 

the shifts, say 1q  and 2q , each separately to two sets of v plots. Suppose, if 

2,11 q  and 42 q , then 
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From the above examples, it is clear that by using certain shifts individually or 

in combination, one or more sets of b blocks can be constructed. Details of the 

method of cyclic shifts are given in Iqbal and Tahir (2008). 

3. CONSTRUCTION OF BTIBDS WITH UNEQUAL BLOCK SIZES 

In this section, we will consider the construction of designs for comparing test 

treatments with a control, when the blocks are of unequal sizes. Gupta and Jones 

(1983) gave some methods for constructing equireplicate balanced block 

designs. Jones et al. (1987) extended the method given by Gupta and Jones 

(1983) by using triangular PBIB designs. In the method described by Gupta and 

Jones (1983), we take two block designs, say 1D  and 2D . Design 1D  consists 

of 1b  blocks of size 1k  and design 2D  of 2b  blocks of size 2k .  The treatments 

replication in each of these designs is 1r  and 2r , respectively. Let 11 , 12 , …, 

n1  be the number of concurrences between treatment 0 and treatments 1,2,…, 

n respectively in 1D , where 2/vn   if  v  is even and 2/)1(  vn , if v  is 

odd. Similarly, 21 , 22 , …, n2  are the concurrences between treatment 0 and 

treatments 1, 2, …, n in 2D . Obviously a balanced design in ( 2211 bcbc  ) 

blocks of sizes 1k  and 2k  can be obtained by adding together 1c  copies of the 

blocks in 1D  and 2c  copies of blocks in 2D , if   22121111 // kckc  for 
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i=1, 2, …, n and   is some positive integer. The replication in the new design 

will be 2211 rcrc  . 

Using this procedure, we can construct many new designs for different values of 

),,( 21 kkv  for comparing test treatments with one control when blocks are of 

unequal sizes. For illustration one representative case for 7v , 51 k  and 

42 k  is presented in Table 3.1. In these designs C means augment each block 

of this part of the design with a control treatment once while [1(2)] means add 

shift [1] to the design after repeating it twice with v treatments. For example, the 

BTIB design discussed in example 1 (section 1) can easily be constructed by 

using the following sets of shifts [1(2)] 2C+ [2(
2
1 )]. 

Table 3.1: Suggested designs for one representative case 7v , 51 k  and 

42 k . 

1b  2b  0r  1r  Sets of Shifts 

7 7 7 8 [122]C+[112] 

7 14 7 12 [112]C+[112(2)] 

7 21 7 16 [112]C+[112(3)] 

                      
14 7 14 12 [112(2)]C+[112] 

14 14 14 16 [112(2)]C+[112(2)] 

14 21 14 20 [112(2)]C+[112(3)] 

                          
21 7 21 16 [112(3)]C+[112] 

21 14 21 20 [112(3)]C+[112(2)] 

21 21 21 24 [112(3)]C+[112(3)] 

                         
7 14 14 11 [112]C+[12]C+[112] 

7 21 14 15 [112]C+[12]C+[112(2)] 

7 28 14 19 [112]C+[12]C+[112(3)] 

                         
7 21 21 14 [112]C+[12(2]C+[112] 

7 28 21 18 [112]C+[12(2)]C+[112)(2)] 

7 35 21 22 [112]C+[12(2)]C+[112(3)] 

                         
7 28 28 17 [112]C+[12(3)]C+[112] 

7 35 28 21 [112]C+[12(3)]C+[112(2)] 

7 42 28 25 [112]C+[12(3)]C+[112(3)] 

                         
14 14 21 15 [112(2)]C+[12]C+[112] 

14 21 21 19 [112(2)]C+[12]C+[112(2)] 

14 28 21 23 [112(2)]C+[12]C+[112(3)] 
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                         
14 21 28 18 [112(2)]C+[12(2)]C+[112] 

14 28 28 22 [112(2)]C+[12(2)]C+[112(2)] 

14 35 28 26 [112(2)]C+[12(2)]C+[112(3)] 

                         
14 28 35 21 [112(2)]C+[12(3)]C+[112] 

14 35 35 25 [112(2)]C+[12(3)]C+[112(2)] 

14 42 35 29 [112(2)]C+[12(3)]C+[112(3)] 

   

21 14 28 19 [112(3)]C+[12]C+[112] 

21 21 28 23 [112(3)]C+[12]C+[112(2)] 

21 28 28 27 [112(3)]C+[12]C+[112(3)] 

                         
21 21 35 22 [112(3)]C+[12(2)]C+[112] 

21 28 35 26 [112(3)]C+[12(2)]C+[112(2)] 

21 35 35 30 [112(3)]C+[12(2)]C+[112(3)] 

                         
21 28 42 25 [112(3)]C+[12(3)]C+[112] 

21 35 42 29 [112(3)]C+[12(3)]C+[112(2)] 

21 42 42 33 [112(3)]C+[12(3)]C+[112(3)] 

                         
28 7 7 23 [1111+1112+1121]+[112]C+[112] 

28 14 7 27 [1111+1112+1121]+[112]C+[112(2)] 

28 21 7 31 [1111+1112+1121]+[112]C+[112(3)] 

                         
35 7 14 27 [1111+1112+1121]+[112(2)]C+[112] 

35 14 14 31 [1111+1112+1121]+[112(2)]C+[112(2)] 

35 21 14 35 [1111+1112+1121]+[112(2)]C+[112(3)] 

                         
42 7 21 31 [1111+1112+1121]+[112(3)]C+[112] 

42 14 21 35 [1111+1112+1121]+[112(3)]C+[112(2)] 

42 21 21 39 [1111+1112+1121]+[112(3)]C+[112(3)] 

                         
    

4. REMARKS 

In general, the optimality property of block designs requires that the off-

diagonal elements of the concurrence matrix should be as close as possible. That 

actually depends on the number of concurrences between the pair of treatments. 

Using the method of cyclic shifts, the number of concurrence between any pair 

of treatments can be obtained from the set of shifts used to construct the 

BTIBDs. It means that the concurrence matrix or the concurrences among off-

diagonal elements play a vital role for a block design or BTIBD to be optimal or 

not. According to John (1987) “…the information matrix C  and concurrence 
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matrix NN   of a cyclic design are circulant...” Further, the circulant matrix can 

be specified by the elements in the first row, since the other rows are obtained 

from the first row by a cyclic rotation. This is the main reason for which we can 

quickly and easily obtain the properties of a design directly without constructing 

blocks of the design. It has been found on the basis of off-diagonal elements of 

concurrence matrix, and also due to circulant property that all these cyclic 

BTIBDs are A-optimal, since they are constructed through cyclic shifts. 
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