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ABSTRACT 

With the increasing awareness and desire of consumers to have the best product in 

terms of product features like reliability, hazard rate etc., large number of 

equipments/systems in the market are, nowadays, facing hard competition to 

attract the attention of the targeted clients. In such situations, it is in the interest of 

the producers to attach some guarantee to the performance of the 

equipments/systems when these are tested or subjected to some stresses for their 

abilities to perform the intended functions. Thus, in the present paper, we, at first, 

consider the concept of re-modeling the stress-strength reliability model, 

][Pr YX  , in the light of guaranteed strength and the at least stresses that are 

faced. Secondly, the re-modeled stress-strength reliability model has been 

analyzed both in the classical and Bayesian set-ups. 

 

1. INTRODUCTION 

The studies like Bhattacharya and Johnson (1974), Chao (1982), Harris and 

Church (1970), Kapur and Lamberson (1977), Porat et al. (1994) and Sathe and 

Dixit (2001) have reported a large literature on the classical estimation of stress-

strength reliability, ][Pr YX  . This model is concerned with the reliability of a 

component’s strength, Χ , subjected to a stress, Y . Assuming the random 

character of the parameters of the basic distributions of Χ  and Y , the study in 

Draper and Guttman (1978) provided the Bayesian analysis of the reliability in 

multi-component stress-strength model. The study by Owen et al. (1964) 

developed a non-parametric approach for defining the confidence limits and 

confidence bounds for ][Pr YX  . 

In practice, we come across situations where the disposal of the systems, 

equipments or establishments in the market has to face stiff competition in terms 

of their quality specifications. Accordingly, the designer’s objective is to attach 

high probability to the event that the system performs its intended task 

satisfactorily with a guaranteed strength when subjected to some at least stress. 

For meeting the stated designer’s objective, the present study initially deals with 

the remodeling of the strength-stress reliability model ][Pr YX  . This re-

modeled reliability is then analyzed in both classical and Bayesian frameworks. 
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In the Classical setup, we obtain maximum likelihood estimate )(MLE , 

uniformly minimum variance unbiased estimate )(UMVUE  along with their 

simulated sample mean square error )(MSE  of re-modeled system reliability. 

On the other hand, using the subjective priors for the random parameters, Bayes 

estimates of re-modeled stress-strength reliability model under squared error 

loss function )(SELF  along with their posterior variances are obtained and 

analyzed. It is important to mention that Bayes estimates of the system 

reliability are calculated using numerical integration and Lindley approximation 

approaches. 

For re-modeling the system reliability, the strength and stress variables are re-

defined as: 
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i.e. the strength '' Χ  and stress ''Y  variables are truncated in the ranges ],0[ x  

and ],0[ y respectively. Here, '' x  is the guaranteed strength and '' y  is the 

at-least stress encountered by the system during its operation. Here, both x  

and y  are assumed to be known. 

Hence, the re-modeled form, say 
yx

R  , , of the system reliability, ][Pr YX   

is 

 ],|[Pr, yxYXR
yx

   

    ][Pr
yx   .              (1.1) 

Here, it is assumed that '' Χ  and stress ''Y  are stochastically independently 

distributed. 

2. STATISTICAL BACKGROUND 

For establishing the theoretical developments, it is assumed that: 

i) The random variable )(rv  '' Χ  follows Weibull distribution with probability 

density function )( pdf  
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ii) The rv  ''Y  also follows Weibull distribution with pdf  
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iii)  On using i) above, the pdf  of left truncated variable '' Χ  , say )(xh , 

becomes 
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Similarly, in view of  (ii) above, the  pdf   of the left truncated variable ''Y , say 

)(yh , becomes 
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For Bayesian setup, it is further assumed that: 

v)   is considered as a rv  following inverted gamma prior with pdf  
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Here, the parameter c  in (2.3) is assumed to be known. 

vi)   is also a rv  following inverted gamma prior with pdf  
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Here, the parameter a  in (2.4) is also assumed to be known. 

vii) For the sample of size n  say ),,,( 21 nXXXX  from (2.3), the joint 

density function of X  is given by 
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Similarly, the joint density function of the sample of size m from (2.4), say 

),,,( 21 nYYYY   is given by 
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3. RE-MODELED RELIABILITY IN PARAMETRIC TERMS 

On using (2.3) and (2.4) in (1.1), the parametric form of the re-modeled 

reliability can be written as 
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On using the transformation 
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4.   ESTIMATION  OF  THE  RE-MODELED  RELIABILTY  

MLE   OF 
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The logarithm of the likelihood function given in (2.7) is 
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Thus, the sMLE  ĉ  and ̂  are solutions of the equations 
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(4.1) may be solved for ĉ  by Newton Raphson method or any other suitable 

iterative method and accordingly, ̂  is obtained from (4.2). 

For known value of c , ̂  will be 
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Similarly, following as above, the respective sMLE  of a  and   i.e. â  and ̂  

are the solutions of 
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(4.3) may be solved for â  by Newton Raphson method or other suitable 

iterative method and this value is substituted in (4.4) to obtain ̂ . 

For known value of a , ̂  becomes 
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Finally, on using the invariance property of the MLEs , the MLE  of the re-

modeled system reliability in (3.1) becomes 
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For known values of a  and c , the above expression in (4.5) reduces to 
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The expression for 
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ˆ  given in equations (4.5) and (4.6) cannot be reduced 

in closed forms. 
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Proof:   For ca  , the expression of the re-modeled reliability in (3.1) reduces 

to 
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Now, let us define a statistic 
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In order to obtain the expression in (4.8), we have to derive the conditional 

distributions of )|( vVwW   and )|( uUzZ  . 

Now, on using (2.3), the respective distributions of W  and V  can be easily 

obtained 

 


























 








c
x

W
w

wf exp
1

)( ;  c
xw   

and 

 


























 















 c
x

n

nc
x

V

nv

n

nv
vf exp

)(
)(

1

; c
xnv  . 

Further, 



n

i

c
iΧWV

2

 and has the pdf  



Inferences on the systems with guaranteed strength …  31 

 
























 


















 c
x

n

nc
x

WV

nwv

n

nwv
wvf

)1()(
exp

)1(

})1(){(
)(

1

2

; 

                   c
xnwv )1()(  . 

Following the study in Sinha (1986), the rvs  W  and )( WV   are independent. 

Hence, the conditional distribution of )|( vVW  ) is 
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Similarly, in view of (2.4), the conditional distribution of )|( uUZ   is 
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Now, using (4.9) and (4.10) in (4.8), the UMVUE  of 
yx

R  ,  in (4.7), say 
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Hence, the lemma is proved. 

BAYES ESTIMATOR OF 
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Similarly, in view of (2.6) and (2.8), the posterior distribution of  , say 
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On using the posterior distributions obtained in (4.12) and (4.13), the Bayes 

estimator, say *
, yx

R   of the re-modeled reliability, 
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R  ,  in (3.1) under 

)(SELF  is 
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The posterior variance of the Bayes estimate, 
yx

R  ,  is given by 
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Since, Bayes estimate 
yx

R  ,  in (4.14) cannot be obtained in closed form 

solution. Therefore, we use numerical integration and Lindley approximation 

approaches to obtain 
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5. NUMERICAL STUDY AND CONCLUSIONS 

Simulated samples of sizes 30n  and 30m  were drawn from distributions 

given in (2.3) and (2.4) respectively. On using the simulated sample information 

and the relevant expressions, the various estimates (Classical and Bayes both) of 

yx
R  , for fixed y ,  , )(E ,  , )(E , ca   and varying x   have been 

summarized in table-1. 

Similarly, various estimates (Classical and Bayes both) of 
yx

R  ,  for fixed 

x ,  , )(E ,  , )(E , ca   and varying y  have been listed in table-2. The 
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entries given in the parentheses represent the corresponding MSE  of the 

estimates. 

From tables-1 and 2, it is observed that 

 True reliability and its various estimates 
yx

R  ,
ˆ( , 

yx
R  ,
~

, 
yx

R  ,  and 

))(,


Lindleyyx
R   tend to be low in case yx   , i.e., the stress experienced 

by the system is greater than the guaranteed strength. 

 True reliability and its various estimates 
yx

R  ,
ˆ( , 

yx
R  ,
~

, 
yx

R  ,  and 

))(,


Lindleyyx
R   tend to be high when system is guaranteed for higher 

strength with lower stress, i.e., xy   . 

 As expected, the UMVUE of 
yx

R  ,  is more efficient than other estimates 

like 
yx

R  ,
ˆ , 

yx
R  ,  and 

)(, Lindleyyx
R  . 

 The reliability and its various estimates increase (decrease) uniformly as the 

value of x  increases ( y  increases). 

Thus, for analyzing the trends observed above of the theoretical developments, 

the system designer can achieve a trade-off between the intended reliability with 

guaranteed strength subjected to some at least stress. 

Table 5.1: Classical and Bayes estimates of 
yx

R  ,  for   fixed 5.6y , 

 = 5.4)( E ,  = 0.2)( E , a = c = 0. 5 and varying x  

x  
yx

R  ,  
yx

R  ,
ˆ  

yx
R  ,
~

 

yx
R

 ,
 

)(, Lindley
yx

R


 

0.5 0.226 0.382653 

(0.26544) 

0.237303 

(0.00891) 

0.156786 

(0.015904) 

0.367772 

(0.01982) 

6.5 0.692 0.631324 

(0.1474) 

0.651903 

(0.004269) 

0.711437 

(0.002578) 

0.635844 

(0.0032) 

12.5 0.812 0.757375 

(0.166) 

0.867057 

(0.00125) 

0.811008 

(0.002135) 

0.760609 

(0.0027) 

18.5 0.872 0.819781 

(0.167) 

0.915 

(0.000145) 

0.866339 

(0.001652) 

0.822101 

(0.0025) 

24.5 0.91 0.850415 

(0.1364) 

0.92 

(0.000311) 

0.884813 

(0.001516) 

0.852768 

(0.003) 
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TABLE 5.2: Classical and Bayes estimates of 
yx

R  ,  for fixed 5.12x , 

5.4)(   E , 0.2)(   E , 5.0 ca  and varying y  

y  
yx

R  ,  
yx

R  ,
ˆ  

yx
R  ,
~

 

yx
R

 ,
 

)(, Lindley
yx

R


 

0.5 0.925 0.935635 

(0.044) 

0.965417 

(0.000241) 

0.898176 

(0.001409) 

0.931545 

(0.00004) 

6.5 0.812 0.823 

(0.0411) 

0.814031 

(0.001854) 

0.803031 

(0.002252) 

0.828037 

(0.000255) 

12.5 0.692 0.614076 

(0.075) 

0.689884 

(0.003665) 

0.677188 

(0.00294) 

0.626301 

(0.0044) 

18.5 0.548 0.474602 

(0.060) 

0.57817 

(0.021915) 

0.611749 

(0.003027) 

0.491231 

(0.00331) 

24.5 0.375 0.278761 

(0.065) 

0.372575 

(0.017927) 

0.45142 

(0.00562) 

0.297377 

(0.00618) 
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