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ABSTRACT 

In this paper, a size-biased generalized geometric series distribution )(SBGGSD  

has been defined. The moments and recurrence relation of SBGGSD  have also 

been obtained. The estimation of parameters of SBGGSD  and Zero truncated 

geometric series distribution )(ZTGGSD  has been discussed. The distributions 

have been fitted some observed sets of data to test their goodness of fit. 

 

1. INTRODUCTION 

Mishra (1982) using the results of the Lattice path analysis obtained a two 

parameter generalized geometric serried distribution )(GGSD  given by its 

probability function 
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At 0  this distribution (1.1) reduces to Bernoulli distribution and is a 

particular case of the Jain and Consul’s (1971) generalized negative binomial 

distribution )(GNBD  in the same way as the geometric series distribution is a 

particular case of negative binomial distribution. It can be seen that geometric 

series distribution )(GSD  is a particular case of (1.1) and can be obtained at 

1 . 

The interesting properties and applications of the distribution have been studied 

by Mishra (1982), Singh (1989), Mishra and Singh (1992), Hassan (1995) and 

Hassan et al. (2002, 2003, 2007, 2008 and 2009). They investigated and found 

this distribution (1.1) to provide much closer fits to all those observed 

distributions where the geometric distribution and the various compound 

geometric series distributions have been fitted earlier by many authors. 

The moments of the GGSD  (1.1) about origin and variance have been obtained 

as 
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TRUNCATED GGSD 

A zero-truncated form of the GGSD  (1.1) is defined as 
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and its mean and variance are  
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The method of maximum likelihood estimation )(MLE  of the parameters   and 

  is not simple to apply to the two equations for (1.1) and (1.6). The MLE  

equations are not found to be solved directly. The estimates given in (1.10) and 

(1.11) are obtained by the method of moments. 

 )1/(* xx                  (1.10) 

 xx  /)1(**  .               (1.11) 

In this paper, a size-biased GGSD  has been obtained. The moments of the 

distribution have also been obtained. The estimation of parameters of SBGGSD 

and ZTGGSD  has been obtained. The method of moments has been used as a 
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simple alternative to the MLE  and other methods. The distributions have also 

been fitted to some observed sets of data to test their goodness of fit. 

2. A SIZE - BIASED GGSD 

A size-biased GGSD  is obtained by taking the weights of the GGSD  (1.1) as 

x . We have from (1.2) to (1.5) 
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 represents a probability distribution. This gives the 

size-biased GGSD  as 
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The r th moment of the size-biased GGSD  is obtained as 
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The moments of size-biased GGSD  (2.1) are obtained from (1.3) and (1.4) 

using (2.2) as 
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The higher moments can be obtained similarly using (2.2) if so desired. 
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The recurrence relationship of size-biased GGSD  about origin are obtained as 
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3. A METHOD OF MOMENTS OF ESTIMATION OF SIZE-BIASED 

GGSD 

Consider the first moment of size-biased GGSD  (2.1) about origin is from (2.3) 

as 
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where   1)(1 s . 
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From (3.1) we have 
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The (3.2) and (3.3) indicate the estimates of the parameters   and   of 

SBGGSD (2.1). 

Replacing )(1 s  and )(1 s  by the corresponding simple values, x  and 1m  

respectively. 
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4. METHOD OF MOMENTS OF ESTIMATION OF ZERO 

TRUNCATED GGSD 

From (1.7) and (1.8) the estimates of   and   are obtained as 
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From (1.7), we have 
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Replacing )(1 z , )(2 z by the corresponding simple values x  and 2m  

respectively, we get 
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5. GOODNESS OF FIT 

We present here the fitting of the size-biased GGSD  and zero-truncated GGSD  

to the same data set used by Jani and Shah (1981) and Mishra and Singh (1993) 

to only two other data sets by the moment estimation method. These data sets 

are regarding migration and publications by authors. 
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Table 5.1:  Number of households )( xf  having at least one migrant according 

to number of migrants )(x  [Singh and Yadev (1971)] 

x  xf  
Expected frequency 

SBGGSD ZTGGSD 

1 

2 

3 

4 

5 

6 

7 

8 

375 

143 

49 

17 

2 

2 

1 

1 

370.32 

147.70 

45.95 

18.19 

5.23 

1.74 

0.54 

0.18 

375.38 

140.48 

45.77 

19.62 

5.51 

1.86 

0.61 

0.15 

Total  590.00 590.00 

̂   0.12732 0.37657 

̂   1.4233 0.93946 

df   2 2 

2  
 0.4585 0.8848 

 

Table 5.2: Number of author )( xf  according to number of papers in the 

Review of Applied Entomology, Vol., 1913 [Williams (1944)] 

x  xf  
Expected frequency 

SBGGSD ZTGGSD 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

285 

70 

32 

10 

4 

3 

3 

1 

2 

1 

288.0 

66.0 

28.1 

14.0 

7.1 

3.3 

2.2 

1.2 

1.1 

0.7 

284.9 

70.45 

28.62 

10.93 

8.39 

3.349 

1.82 

1.02 

0.59 

0.35 

Total 411 411.0 411.0 

̂   0.0303 0.037 

̂   0.8903 0.9093 

df   3 3 

2  
 2.613 3.439 
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It can be seen from the tables that size-biased GGSD  provides closer fit than 

that provided by the zero-truncated GGSD  in both the cases of using the 

estimates obtained by the method of moments. Moreover, they are relatively 

very quick to be obtained and so it may be preferred to others where very quick 

results are required. 
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