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ABSTRACT
Let {X i’l <i<n} be a random sample from a continuous df F(x) with the

A—th quantile g(A)=inf(x: F(x)>4). The present work concerns with the
study of the smoothed kernel quantile estimator §(4) proposed by Yang (1985)

and establish in terms of mean square error its asymptotic viz. LIL, Berry-
Esseen’s, theorem. By Monte-Carlo study establish, its superiority over all other

forms of quantile estimators of g (4) considered so far in the literature.

1. INTRODUCTION

The estimation of population quantiles is of great interest when one is not
prepared to assume a parametric form for the underlying distribution F.
Besides, quantiles often arise as the natural things to estimate when F is
skewed. Quantile estimators may also be used in estimating percentage points of
a statistic by simulation techniques. Let X, X,,..., X, be a sequence of iid.
random variables with distribution function F(x) and let g(4) be A-th
quantile defined by g(A)=inf{x:F(x)=4}, 0<A<l.If g(4) is smoothed
estimator of g(A)and U,, 1<i<n, is a random sample from U[0,1], then
qU;), 1<i<n,provides a smooth bootstrap sample (Efron 1979, 1981).

The traditional estimator of g(A) is the A—th sample quantile given by
X (nas1y-[x] denoting the integer part of x. The main drawback here is that it
experiences a substantial lack of efficiency caused by the variability of
individual order statistics. The obvious way of improving the efficiency of
sample quantiles is to reduce this variability by forming a weighted average of
all order statistics, using an appropriate weight function. These estimators arc
called L —estimators, a popular class of which is called kernel quantile
estimators. Bahadur (1966) considered the almost sure (a.s.) representation for

the inverse type estimator of g(A) defined by
gy Ay=inf {x: F, (x)2 4} , 0<A<l, (1.1)
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n
where Fn(x)zn_lZI (X;<x) and the asymptotic properties of g, (1)
i=1
automatically follow from it. Bahadur-Kiefer almost sure representation for
9, (A4) was established in Kiefer (1967).

The first proposal due to Nadaraya (1964) starts with smoothed nonparametric
kernel estimator defined by

Tn (D) =inf {x: F, (x)> 1} (1.2)

~ n y
where F,(x)= n"'ZK((x—X,-)/a,,);/K(x)= fwk(t)dt , k being a suitable
: i=]
kernel function and {a,} ‘bandwidth sequence controlling the smoothing of
observations, such that a, 4 0 and na, = as n— . The asymptotics of
g, (1) have been well explored in a series of papers and we refer to Ralescu
(1992) and the references therein.

Parzen (1979) proposed another version of a smoothed nonparametric kernel
estimator of g (A) in terms of kernel function k defined by

s - (i
G D=2 [, kn (A1) Xy
i=1

= [F' Ok, (And, 0<i<l (1.3)

where k, (A4,1)= a;l k((A-1t)/a,). The estimator (1.2a) puts most weight on
X|;). Bahadur—Kiefer almost sure representation for d,(1) was recently

established by X . Xiang (1994). In practice, the following approximation to the
kernel estimator g, (A1) defined in (1.2a) is

G D=1 Sk (A @) X gy~ S X (R (X)) (1.4)
= 1

The derivatives of g,(1) and 5,7 (A) gives smooth estimators for the derivative
of g(4). These may be useful in the approach to statistical data analysis
proposed in Parzen (1979).

To make the total weight unity, we modify 67,, (A) as g,(A) defined as
n n
4n (D) =2 W, (X)X, W, (X,) = k,,(F,,(X,-),i)/{ZK,,(F,,(X,-)J)+ n? }
n 1

(1.5)
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=n"! i X, k,(F,(X),A)/1,(A),
1

where the factor n2 is introduced to assure that the denominator does not
vanish.

Yang (1985) showed that 5,,(/1) and g,(4) as defined in above are
asymptotically equivalent in mean square. By Monte Carlo simulation studies he
showed that, for normal population the performances of 5,,(,1) and g,(4)
defined above are roughly the same, while, for exponential distributions, his
proposed estimator 5,, (4) seemed to be slightly better than g, (A1). For other

type of equivalent estimators, we refer to Sheather and Marron (SM, 1990) and
references therein. Simulation studies of SM 1990 based on samples from
different populations showed that no quantile estimator dominated over the
others, nor was any better than the sample quantile g(A) defined in (1.1a), in

every case. Fiqure 2 in SM (1990) is plot of efficiency of ¢, (A1) with respect to
gy, (A4) for samples from log normal population and indicates that there is little

difference between them and they concluded that, given the well known
distribution inference procedures associated with g, (1) as well as the ease with

which it can be calculated, g, (1) will often be a reasonable choice as a quantile
estimator. Comparing the estimators mentioned above with the estimators
4,(4) and 5,, (4) or g,(4), these latter two are computationally simpler and
have more easily adjustable smoothing parameters a,, to regulate the amount of
smoothness desired.

Objective

The objective of the paper is to establish the superiority of smoothed Kernel
estimator ¢,(A) defined by (1.2c) over all other types of quantile estimators of

q(A) considered so far in the literature.

Here we study the asympotics of the proposed smooth quantile estimator g, (1),
almost sure (a.s.) representation rates of convergence to normality, exact
evaluation of MSE of ¢,(A) comparisons of their performances based on their
MSE's , by Monte Carlo studies.

2. ASSUMPTIONS

The following assumptions are necessary for the main results in the present
investigations.

Al i) The population df F(x) has a pdf f(x) , which is absolutely
continuous and positive in some nghd of q(A).
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i) f(”(X) exists and is continuous at g(A),
i) E|x?P"° <o for p22, 5>0,

iv) q(z)(ﬂ) is continuous in a nghd of A.
A.Ili) k(x) is positive, bounded kernel function with bounded support [-1,1]
(say),
if) k(x) has finite continuous derivatives up to order », 1<r <7 F
iii) k(x) is symmetric about 0, i.e. [t/ k()dt=0, j=13,
Alll'i) Let {a,} be bandwidth sequence such that as n—>w, a, -0 and
na, — o,
ii) na: /loglogn=0(1) as n > o,

The conditions imposed in A.II on k are satisfied by a variety of kernel functions
and we give two examples below for £ :

a) k(s)=2x)""2(1-52) 2 exp[-s?/2(1-s)], if |s|<1,
=0, otherwise,
b) k(s)=c,(1-s2),if |s|<1, for r>1,

=0, otherwise,

where ¢, is chosen so that Lk(s) ds =1

k(s)=C2r) 2512 seR.

3. A.S.REPRESENTATION FOR SMOOTH QUANTILE ESTIMATOR

In order to develop the results in the present paper, we need the a.s.
representation for the smoothed sample quantile §,(1), 0<A <1, defined in

(1.2c) based on the random sample X1, X5,...,X,. We need the following
results in the present work.

Proposition 3.1:

i) (Stute, 1982): If log a;' /loglog a;' —oand na,/logn—> o, as
n— o then by setting

U, (x)=n""2(F,(x)- F (x)) with F,(x)=[#X,]/n
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Sup U,(x)-U,U)=0(a, loga,,)”2 as.
|x—u|<a,
x,ueR(1)

i) (Stute, 1984): Under the assumed conditions

Sup 1B, W)~ B, (xy)=0(a,h, logn)* as.,

where f,(x,y)= n'/Z(H,, ~14)o(x,y)H, being bivariate empirical df of
bivariate sample drawn from H .

Proposition 3.2:  (Drovetzky et al. (1956), Lemma 2): For a random sample
Xi,...,X, iid. F,there exists some e>0 such that

Z:Pr(Supn”2 |F, (x)-F(x)| >€)<exp[- &1,
n>l X

We first state the following results which are needed in establishing Bahadur
type a.s. representation for g,(4).

Lemma 3.1:  Under the conditions A.I (i), A.Il and A.III (i),
t(1,(A)=1+0(logn/na,)"* as. as n>w.

Lemma 3.2:  Under the conditions Lemma 3.1
(t,_,l (A)=0p (logn/na,,)”2 :

We now establish a.s. representation for §,,(4) in the following:

Theorem 3.1: Under the assumptions A.I, A.Il, A.Ill (i) on £, {a,} and F

JnlGa(2) - g =Vng' (A)A - F oq(A) + c2(A)azn'"?)

112, (log log n/ na,)"'?, (3.1)

+0(a, logn)
where
e (1) =27"9P Wy (K) and g1y (K) = [k (1)t
Proof: From (1.2¢), we have
[G,(A) = q(D] =[0, (A)/1,(2) = q(A)]
= [0, (D) = gD, (D) 1,,(A)
=:0,(A)/t,(A). (3.2)
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By Taylor expansion of k,(F(x),4) at F(x)-A/a,,,
D, (A)(x = g(A)k, (F(x), 2) dF, (x)
+ay' [(x = gQONF, ()~ F) kP (F(x), 1) dF, (x)
+27 a.? [(x - () (F, () - F(x))* kP (A))dE, (x)
=g+l +1,;,

where

A(x) lies between (F(x)- A)/a, and (F,(x)=A)/a,

kPAx) = a;'k P (A ).
Let

tay =F(x)-4, x=q(A+ay,t), then

1,

=| [4;'la 3+ a,0) - (AN k(0)a, di

+ JOr= g (A, (F (), A)d (F,, - F)ox

= | [tq® )y +27a, 24P ) + . Yk(t)a,dt
H+ [ =gk, (F(x),1)d(F, - F)ox

=27'4,24P (1) 1y (K)+ € ...

and by Proposition 2.1(i) regarding a.s. oscillation result,

(3.3)

and

34

Vnlenlsn'?a;’  sup |(x=g) k|l (F, - F)ox—(F, - F)og(d)|

x—g(d)i<ca,

= an_ln‘/zcan I & |l (a,logn/n)'? as

=0(a, logn)"? as.

Again, from (3.3)
sl=27"a," [(x - g()F, () - F(x))2k, P (A, )dF (x)
+27a, [(x — g(O)F, (%) - F(x))2k, (A, )

xd[(Fy = F)ox—(F, ~ F)oq(A)]

=€p31 T E€p3p

(3.5)

(3.6)
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Jnlem|=2"a,2  sup  nlx—qIIF, - FIGIK? ||, [dF ()
|x—(1(ﬂ.)|$ca,,

= 0(_a;3 n”zca“ (((loglogn/n)a,))
=0(loglog? n/na?)"? (3.7)
by using Proposition 2.1(i). Similarly,

A o
Vileml= 20,2 sup x=gDIE, - FIGIE® o
|x—q(ﬂ)|$ca,,

x| (Fy = F)ox—(F, —F)eq(d)|

= O(afn”zca,,(Ioglogn/n)(a,, loglog n/n)”2 a.s
=0 (log Iog2 n log logn/nc1,3,)”2 3.8)
Jn| 1,3 10(ognloglognlogn/na})"’?, (3.9)

whereas, from (3.3)

Ly =a;" [(x—q(A)(F, ° q(A) -k, (F(x), A)dF, (x)

+a;' [(x—q(AIF, —-F)ex—(F, - F)oq (kS (F(x), ) dF,(x)

= Lo + 1, (3.10)
Tar =ay [(x- g (F ,q(A) - Dk (F(x), A)dF (x)
+a;'(F ,q(A)= D) [(x = g(Ak;) (F(x),4)
d((F, - F)ox—(F,-F)oq(4)]
=:T,+ € (3.11)
T, =(Fq(A) - Aa;’ [(q@h+a,0) - qUnk O ay di
=(F, o q(M)-DlgV ) [k 0t +27' (¢ (A)a,
[k O @y +...4]
=—qV (W) (F, o g(1) - )+ O(a, (F, e ¢ (D)~ 1) (3.12)

=gV ) (F, o q(A) - A) +O0a’ loglogn/n)"'* as
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in view of assumptions A.I and A.Il and Proposition 2.2 whereas

40D =gDI=a*Vn | F,oq()=4]  sup  |x-q)] £V,
| x-q(2)|sca,

x|(F, = F)ox—(F, = F)oq(2)
= O(a;zca,,(a,, Iogn/rz)”2 a.s
=O(logn/naa)”2 a.s as n—» o (3.13)

by Proposition 2.2. Hence, from (3.3h) — (3.3i)

Ly ==V (AWVn(F, o g(2) - 2)

+0(a; (loglog n)"/2 v(log n/ na,)"'?) (3.14)
and
Lip =a;' [(x=q(A)(F, - F)o X —(F, - F)o g(A) k" (F(x), )
xd[(F(x)+(F, =F)o X —(F, - F)oq(A)]
=t Loy + 1o (3.15)
| 1| < a;? sup |x-q ()]
| x—g(A)|<ca,
[(F = Fyo X ~(F, = F)o g 1 67 |,
=a,’ca,(a, logn/n) | k" ||,
=Q0(logn/n) a.s. (3.16)
by using Proposition 2.1(i) and
|I,,222‘| < a;zca,,(a,, logn/n)”2 I kD Il 'L_quns% dF (x)
=0(a, logn/n)'"? as. (3.17)

Combining equations (3.3), (3.3b) to (3.3n), we get WPI,
VG, () =n gPA)(A-F, 0 q(A) +cy (D) (@2n'?)

+0((a, logn/n)"’?) (3.18)
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0, (4)=(4,(A) — q(ANt, ()

=—[F, oq(A) - A1¢"(A) + cy(A) a2 + O((ay, logn/n)"'?)

Lo o —[F, 0 q(A) - AlgV(A) 2 12
Gn ()= (A =——"— D +cy(M)al +O0((a, logn/n)!'?)

= —{F, o q(A) - A1¢" () + ¢, (Da? + O((a, logn/n)"'?)
by using Lemma 3.1. Hence the theorem follows.
We now establish LIL for ¢,,(1) in the following:

Theorem 3.2:  Under the assumptions of Theorem 3.1,

Limsup+ (2loglogn/ n)] /2 [7,(A) —q(D)]

=gOWDJAA=2)) +c,(D)d"? as.,

where

d=lim ((n a,‘i)loglogn)”2 :
n—we

Proof: From Theorem 3.1
G,(A)-q() =gV (DA =F, o q(A) + cy(D)al + O(a, logn/n)"'?) as.
=:T) +c,(A)a’ +0(z,),
where

T, =-qV (A)F, o q(A) - A)

=—g® (i I(X; <q(A)) - 1]
1

=—qDn! [\'j I(F(X,;)<A) - ,1]
1

=W Yz, - 4)Z, 1V, <2y, U;~[0,1]

=—qV(A)(S, -ES,), VarS,=i(1-A)/n=0} (say),
so that

@22 loglogn)™ 2T = - qW(A) 2062 loglogn)™*(S, - ES,)




126 K. Padmavathi and Y.S. Rama Krishnaiah

lim sup+ (2n~" loglogl1)]"2Tn' =q(”(/1),/(/1(] -A) as.

n—

Now

lim sup+ (2loglog n)‘”z(c},, (A)-q(d))
n—oo

= lim supt (2log logn)"”zT,,' +c3(A) lim a?
11—»o0 n—w0

=gV A=) + ey (D) d"? as.

Hence the result follows.

4. MEAN SQUARE ERROR (MSE)

In order to achieve the main objective of the present investigation, we need to
evaluate the exact mean square errors of all kernel quantile estimators of g (1)),

so that the efficiency ratios of MS Errors can be computed for comparison
purposes.

We first obtain the mean square error of the smoothed estimator defined in
(1.2¢) in the following:

Theorem 4.1:  Under the conditions
MSE g3 (A) + o }oq(An™" +o(a, /n), () =a®,
where
o2og(A)=q" ()21 - ) - 2a,y(K)], cy(A) =is as defined in (3.1)
and
w(K)=2[s K(s)dK(s).
Proof: From (1.2¢),
Gn(A) = 2 X ik, (F, (X, ), 2)/{k, (F (X,), A) + 172}
MSE §,,(A) = E[§,(4) - ¢(D)]*
= ELX (X, =gk, (Fy (X, ATk (Fy (X ), ) + 172 e,
=: E[L, (D)/t,(D))*+e,,, 4.1
where

€n=E[q(A)/n*t7 () - 29(A) L, (A) /1, (A)] = 0(a, / n)




Asymptotic of smoothed kernel quantile estimators 127

in view of Lemma 3.2 and Theorem 3.1. By Taylor expansion of k,, (F,(X;),4)
about (F(X;)—A4)/a,) up to seven terms

L (A =Y (X, — a(Aky (Fy (X, )
1
n 3 (X, - gy (FCX ). DV (X))
1
YK, - q(zl»i«Fn —FY o X,/jlay " YK (F(X), )14, (X))
1 =

+n! i(x,. _gA)Ta®) (F, - F) o Xk (A 4(X))
1

8
=3 (), (42
1

where k) (.) denotes j—th derivative of k(.), 4, : {X; :|F,,(X ,-)—/1] <a,}
and A, lies between F(X;)~-A)/a,and F,(X;)~ Mla,.

8 8
ELZ(A)=Y EJE(A)+2) B i (A)J ;(A) (4.3)

i=l i<j

= EJA(AEJ L) +2 EJ (W) i ()1,

8 8
where 77, = ZEJ% (A)+2 ZEJ,,, (A)J,,j'(/l) can be shown, to be of o(a, /n).
i=3 i<j=3

EJ4(A)=n"2[nE (X, - q(A)* kn (F(X;), ) 4, (X))
+ n(n=1)E(X; - g(Ak,(F(X1), A) (X3 — gk, (F X3),2)
(=1 (X} =1 o (X)) +1 o (XM o (X2)}]

=l =Ty +1n (4.9
Ly =n"" [(u=q(A)* ky (F (), ) dF ()
=n” [a2[g(A+a, )~ gD k* (s)ads
= (na,)”" [la, sqV () + 27'a2 2P () +.. 12 k* (s)ds

=da, n_lq(l)(/i)2 Isz kz(s)ds+ o(af, /n)
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=:a,n"'c;(A)+o(a, /n) 4.5
Ly = [ = q () ey (F (1), A) ty = g (AN, (F (uy), A) dF () dF (uy)
=a;2[[(q A+ a, ) q(2) k(s)ayds]
=47 ayu3 (K)g® ()2 +o(al)
=:ayc3 (A)+o(ay) (4.6)
I3 < ENX, - q(DIIX, - g (A)]k, (F(X)), Ak, (F(X,), )]
X[P{F, (X))~ 41> a,}+ P{IF, (X))~ Al> a,)
+P{F, (X)) - A1> a3 2 B F,(X,) - A]> a,}V2],
where, by Proposition 2.2
P{F, (X)-4] >a,)
= PUF, (X))~ F(X))| >a, - |F(X;)-A]]

na

=P[| Fpy (X)) -F(X) | > B R )2

=
5= i -mE)
n—1

= P[sup| F,_((®)-F®|>a,e,],
where

gy =(n/n-1)(1-|F(X))-4)/a,|-( - F(Xy)/n-1)a,, so that the rhs
is dominated by

expl-cinagey]=expl-cinay (1-|s; | ~cap,)*1, w, 40 0as n—w

and
[Ls1< e? [(a(A+a,s) — q(A)k(s))a,ds,
x [(g(A+a,83) - g(A)k(sy)a,ds,

xexp[-cyna? (I~ s, | cw,)?]
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SCa:[f_d + _E_a" ]k(s)exp{—clnaf(l—s—a,",‘/z)z}ds,

where 3, = a,],/4 and by Taylor’s expansion of k (s) at s=1, we have

a: f_‘,” (s- ])sk(s)(s')exp {‘01"03(1 = —03/2)}ds

<al [ nexp Op exp{—c; nal(s—c, a’'?)?} ds
n 0 1 n 2 %n

Sag/\/n a3 =o(a, /n) 4.7

and using (1-s5)26,, the other integral can similarly be shown to be of
o(a,/n) asn—ow,

Thus
EJ2 () =a n™'c/(A)+atcd(A)+o(a, In), (4.8)

where cl(/l)=q“)(l)2 _[.szkz(.s)(is- and c,(1) is as defined in (3.1). Again
from (4.1),

Eng (D) = (nay) 2 E (X, - ¢(2) A2 B, (X)) kDX (F (X)), 1), (X))
+n(n-1)E(X, - q(D))(X; - gk (F (X)), kD (F (X,), 4)
By (X0 B, (X5) {1 =1 o (X0)=1 o (Xp) =1 o (X)) o (X)}]
=1n4+1n5+1n6’ (4.9)

where

B,(X))=F,(X,)~ F(X))=n" iu(x,-sX.)-F(XI)}+(IfF(X.)>}.
J=2 |

Setting E() as conditional expectation given X,
EB, (X))’ <F(X))(1-F(X))/n<1/4n,

1Lyl n™ a0 [lq(A+a,s)— (AP (k"2 (s)/ 4n)a,ds
=o(a,/n) (4.10)
Iys = ap E(X; —q(A)(X; - gk (F (X)), ) kD (F (X,), A)

x E B, (X)) B,(X5).,
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where
EB,(X,)B,(Xy)=((n=3)/n®)[F (X, A X;)— F(X))F(X))]+0(n2).
Ls =n""a;* E(X) - (AN (X3 - g (kD (F (X, HED (F (X), )

[F (X, AXy)-F(X))F(X))]+o(a,/n)

=n"'a;* [[lg(A+a,s)-a(Dg (A +a,s7) - q(D)]

x kD () kW () [(A +a,51) A (A +a,5,)]

—(A+a,s)(A+a,s,)aldsds,

=n"'a;? [[la,s1g® (D) +.. (@529 () +.. 16D (5)k D (s5)

x[A(1 = A)+a,5; ASy —Aa,(s) +5,) +a}s;s,1ds; ds,

=n~'qW () [[lsik" (1) 52k (52) + Oay)]

X[A(1=A) +a,s| ASy —Aa,(s; +s;)+0(al)]ds, ds,

=n"gO WA - Daw(K)+o(a})].

1, can, as for 1,3, be similarly shown to be o(a, /n) so that
EJLA) =n"'qV A0 - D) -ap (K)+o(a)]+o(a,/n).  (4.11)
We now consider
EJ (W) ps(A) = (n2a) " [ E (X - q (D) ky (F (X)), DD (F (X)), 2)
xE B,(X)14,(X))
+n(n=DE(X, - q(A) (X5 - gDk, (F (X)), kD (F (X3), 2)
xE B, (Xo) {1~ 1o (X1)=1 o (X2)+1 1o (X)) o (X2)}]
=19+ Ly (4.12)
Since E B, (X,)=(-F(X,))/n,

L l=n72a; [(g(A+a,s) - g(A) k(s kD (s))(1 - 2~ a,s51) a,ds,

=O(n_2)=o(a,,/n). (4.13)
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1L, 1=a,” [(q(A+a,s1) - g(A)k(s))a,ds,
x [(a(2+a,55) =gk (52)[(1 - A ~a,s,)/ ) a,ds,
=a," [la,519" (W) +27'stangP (D) +..1k(s))a, ds,
x[a,s;qV () +..1kV(s,)[(0 - A—a,s,)/n]a,ds,
=27'a,4P (1) py (K) {-a,4" (A (A - 2/ n} + 0(a, / n)
=-(1-2)/2a;q®()qV (A (K) +0(a, /n)
=o(a,/n). (4.14)
Similarly it can be shown as for 7,3, that |/,9|=o0(a,/n), so that,
EJi(2)J 2 (2) = 0(a, I n) (4.15)
Using Lemma 3.2, it is easy to establish from (4.6), (4.9) and (4.13).
E[L,(A)/t,(A) = ELL(A) +£s»
=0',2,oq(/"t’)n"l +a:c§(ﬂ)+o(a,,/n)+£,,2 (4.16)
£ =2EL2(1)O(ognina,)"? + EI*(A)O(logn/na,)
=0(a, /n(logh/na?,)”z) =o(a, /n)

which establishes thte assertion of the theorem.

Optimal bandwidth: We now choose the bandwidth {a,} such that the mean
square error of §,(4) is a minimum. Setting

M (a,) = MSE(§,(A)=n""d; -n"'a,d, +a,ds,
where
dy=qVW)*20-2)>0, dy =¢V (W)W (K)>0 and
dy =47'gP (1)’ 1, (K)* >0.
Partially differentiating w.r.t. a, and equating to zero, we obtain

oM (ay) _

—-n"ldy+ 4a,3,d3 =0
da,
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@y op =(dy 1 4d;3m)">

=[1/n(f%0q(A)/ fHoq(A) (v (K))/ 12 (K))]'">

=[(w (K)/ 113 (K)) £ *og (A I(f P2oq (M]3 =a!, Iaog(A), (4.17)

where
a, ={y (K)/nu, (K)3'3 a completely known constant and

a(x)= {f(')(x)2 /f4(x)}”3 involving parameters f (x) and f”) (x).

It f is unknown, the optimal bandwidth has to be estimated based on a
preliminary random sample by

Ay, opt = G/ @, 0q (1) (4.18)
a,(x) being a suitable nonparametric estimator of a (x).
MSE (G, (D min =n"'dy = (d3 14d3)">n™"3 4 (d, 14d3) " ™3,
=n"ld, - (d3 14d3)"P[1-1/4]n*"3
=n"'[d, -3/4(d5 14d;)"? n'?]
=n" (A0~ A)/ f20q(A) =3/2{y (K)* In(uy (K) f Vog (A) f 0g (A))2}']
=[nf® ogWI'[A0- 1) -3/y (K)a), /xog(A) =: M, (say) (4.19)
and estimated MSE (§,,(A) min is given by
MSE (§,(A) in =n"'[dy —3/4(d3 14d,)'3 7113
=4V’ n7' A0 - 1) -3/y (K)d, /@, 0g (A)],

where G(4), ¢ (1) and @, (.) are suitable estimators of ¢(1), ¢ (1) and
o (.) respectively.

Comparisons: The other competing estimators of ¢(1), as mentioned in

i'ntroduction, are q,(4), g,(1) and G, (A), where Mean Square errors are
given as follows:




Asymptotic of smoothed kernel quantile estimators 133

i) gq,A)=inf{x: F,(x)> A}, the unsmoothed nonparametric estimator of
q(A) whose a.s. representation was thoroughly studied by Bahadur (1966):

40 (W) - q(A) =gV (W)[A-F, 0g(1)]+ O(loglogn/n)*"* as.
M = MSE (g, (A)) = bias 2+ Varg,, (1)

=qgM )2 A0 - 1)/ n+o(loglogn/n)’'?.
ii) g, (A) is the smoothed nonparametric kernel estimator of g (A)given by

g, (A)=inf {x: I:",, (x)= 4}, where ﬁ" is given by

13‘,, (x)= n! ZK ((x—X;)a,) and the Bahadur type representation as
studied by Mack (1987) is given by

72 (D) -q(A) =gV ()(A-F, 09(A) +o(loglogn/n)*"*
with F,(0 = [° K((x-u)/a,)dF (u)= [F(x-a,1)dK (1)
= F(x)+cy(A)a? +0(a})
E[F,(x)-Fx)]* =En™ {ZK((x—X,.)/a,,)—F(x)}]2
=n"' [{(K((x~u)/a,) - F (x)}*dF (u)
+EHK ((x- X))/ a,) - F (x)}
= n*'[sz (x—u)/a,)dF (u)-2F (x) [K (x—u)/a,)dF (u)
+ F)2 ]+ [aded )
=0 [F(x)(1- F(x)) - f () a,y (K) +o(ay)]
+atc2(A)+o(a, /n)
and
V.2 (x) = Var (F,,(x))

=n ' [Fx) (- F(x) - f(x)a, yw(K)]+o(a,/n)
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MSE (g, (A)) = bias > + Variance
= a:cg A+ v3 oq (/1)(1“)(/1)2 +o(a,/n),
where ¢, (4) is as defined in (3.1).

iii) g, (1) is the smoothed nonparametric kernel (Parzen (1979)) estimator of
q(A) defined by (1.1b), i.e. g, (1) = a;l f)F,,'l(t)k((t —A)/a,)dt . Sheather

and Marron (1990) studied the asymptotics of g, (1) and other estimators,
made comparisons by means of their MSEs . It was shown that

MSE(,(A) = ¢P*(D)n'[A01 - 1) - a, y (K)]
-k a:c%(ﬂ) +o(a,/n).

The comparison of the four estimators of q(A) are made in the following table
in terms of their bias and variance components.

Table 4.1:
Estimator Bias Variance
q(4) O(loglogn/n)>'* A =2A)/nf2oq(A)

LA 27 Ooq) fogny | A=Az "i Wy &) 4+oay
pa (K)a2(1+ 0(1) i

’(‘]'n (/1) 2—l(f(1)0q(/1)/f3 O(](l))z l(]—l)z_an/{//(K) (1+0(]))
Uy (K)aZ(1+0(1)) nFels

4, (A) 27 (fWoq (1) f2oq(ay | A0 '1)2_ a, y (K) (1+0(1)
2 nf oq(A)
Hr(K)a, (1+0(1)

where y/(K) =2 [s K (s)dK (s) > 0.

Note that the unsmoothed inverse type estimator g(A) is very much inferior to
all other biased kernel estimators given above when compared in terms of their
variance component which is just negation of the conclusions made in Sheather
and Marron (1990) based on higher order kernel. Further g, (1) and g, (1) are
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asymptotically equal in performance. However as the simulation results
appended the g, (1) is definitely superior to d, (A) for small n.

Minimizing MSEs, MSE(q,,a,)and MSE(G,,a,)of g,(A4) and g,(4)
wrt. the bandwidth a, involved, the optimum bandwidths are respectively
shown to be

Gy o =L 0q (D (K1 f O 0g (1) 415 (KON

=:a,/a, 0q(%) (4.20)

iy o =Lf* 0q(A)y (K)/n f D 0g (A)* 113 (K)I'"
=:a,/aoq(A),

where a, =y (K)/ nu, P, a known constant and

a(x)=[f D)2/ f (x)]"? and then the attainable MSEs at these optimal

bandwidths coincide, i.e.

MSE(q,, ‘_In,opt Ymin = MSE (@n> an,apl Ymin =M>

M, =[nf*og(A]' A0 - 2)-3/4y (K)a,/aoq(4) 421)
M, =M, <MSE(q, (1)) =M,

i.e minimal MSE obtained with optimum bandwidth a, ,, of g,(4) is the
least when compared to the unsmoothed kernel estimators g, (A) . Thus, since
G, (A) is a linear zed estimator, computation wise 4, (A) is preferred over
7,(A) and g, (A), studied in the literature . And further due to the empirical
verification done in the following section 6. g, (4) is definitely superior over

g, (A) and g, (4), studied extensively in the literature so far.

5. ASYMPTOTIC NORMALITY

In this section, we establish the rates of convergence of the sampling distribution
of Q,,(ﬂ) = \/; (g,(A)—q(A)) to the normal distribution. We need the following

basic lemma 1 in order to prove the Berry — Essen’s Theorems for different
statistics in the sequel.

Basic Lemma 5.1:  Assume that for {Z,) and {Y,) satisfying

(i) Pr(Z,<x)=@(x)+p,(x)p(x)+0(7,3)
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(”) Pr(, Yn |> C|2',,|) = CaTnas

where p, (x) is a polynomial in x of order 2, @ the df of N(0,1) rv and Eats

Th2> Tyz3 v 0Das n—> a0,
Then

Pr(Z,+Y, <x)=Pr(Z,<x)+0(z, v T2 VT,3). (5.1
We now prove the main result of the present section in the following.

Theorem 5.1:  Under the assumptions of Theorem 3.1
Priyn (4,(A) -4 (D)< 20, 09 (D] - O(f 0g (W) ) Sy, (5.2)
where

cb=cpo™, o =A(-1), p=Elly-AP, I,=1(FX)<A).
o7 0g(D)=[A(-A)-a, y (K)]q"(A)? and 7, =(logn/na,)"?.

Proof: From Theorem 3.1
Ou (D) nog(A)=t,(D-¢"(A)(F, 09 (1) - 1)/ 5, 09 (A))] + R,

Le. VnD,(1)/c,0q(A)=:Z,+R,, R,=0{Jn(z,va?)} as.

with 7, =(a, logn/n)"'?.

Now using Lemma 5.1
Pr(¥nD,(2)/ 0, 09(2)<2)-®(z f 0g(A)
=Pr(Z<z)-®(z f 0g(A)+0(z,)

and
[Pr V75,410, 09 (1) < 2)- B (f 0g @
<|Pr(Z<2)-@(z f 0g(A))|+0O(z,) (5.3)
Now using Berry - Essen’s theorem for

Z, =031, - 1)/ 0, 0q(A) f 0q(3)
|

with
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I, =I(X,<q(A)
|Pr(z, <2)-®(z f oq(A)|<cE|L, - 4’ 10263 og(A) =cyn™2. (5.4)
Equation (5.3) can now be written as
“Pr WnD,(D)/ 0, 0q(H)<2)-0(f og(W)|sesn™ +0(,).  (55)
Now
Pr[vn (§,(A) - q(A)/ 0, 0q(A) < 2]
=Pr(VnD,(A)/0, 0g(A)<z1,(A)) (5.6)

[PV Gu (D) -a (W) 5, 0a (W <21~ 0 (eF 0g ()]
s"Pr(\/; D, (A)/ 0, 0q(A)<zt,(A)) f 0g(A) - D (21, (A)) foq(,i)"w

+|@(z1,(A) f 0g(A) - @ (z f og (D),

_<_c,,n_”2 + suplqu(z)|E|t,,(/1)— II

Using Lemma 3.1, p(z)=(27)"2¢™/2, sup|zp(2)|=Q27e)™"2 (5.6), (5.7),
we have z
[Privi G, (- a () 0, 092 < 21- B (of 0g (W) <cpn™?0(z,)
So that
|Privn G, (D) - g () 0, 09(A) < 21- @ (oF 09 (A))|_ <c47,
Hence the result is established.

6. EMPIRICAL JUSTIFICATION FOR SUPERIORITY OF q, OVER
. OTHER ESTIMATORS q, AND Qx BASED ON SES

The following table provides the standard errors of empirical distributions of
various quantile estimators g, (1), ¢,(4) and g, (1)of q(A)generated by
simulation study consisting of drawing random samples of size n=30,
repeatedly N =1000 times from (i) Standard Normal (ii) Exponential, A=1,
(iii) Log Normal (0,1).
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Table 6.1:
Normal (0,1) Exponential (1) Log normal (0, 1)
A SE SE SE SE SE SE SE SE SE
) | @D | 4D | G, D) | @D | 4, D | §,D) | @D | 9, D
0.05 | 0.2741 | 7.5462 | 0.9022 | 0.0574 | 14.466 | 0.9769 | 0.780 44.028 | 2.1446
0.15 ] 0.2432 | 3.9456 | 0.8336 | 0.0704 | 8.0067 | 0.9729 | 0.0952 | 24.939 | 2.6426
0.25 | 0.2138 | 1.9578 | 0.7717 | 0.0891 | 4.0336 | 1.0273 | 0.1126 | 14.008 | 2.4600
0.35 | 0.2029 | 0.8848 | 0.7131 | 0.1154 | 1.7482 | 1.0646 | 0.1405 | 5.2312 | 2.1167
0.45 | 0.2089 | 0.3778 | 0.6605 | 0.1494 | 0.6294 | 1.0010 | 0.1911 | 2.0868 | 2.2804
0.55 | 0.1956 | 0.3607 | 0.6107 | 0.1767 | 0.2422 | 1.0486 | 0.2476 | 0.5062 | 2.3905
0.65 | 0.2100 | 0.8768 | 0.5832 | 0.2133 | 0.2849 | 1.0385 | 0.3267 | 0.4377 | 2.6022
0.75 | 0.2180 | 1.9424 | 0.5455 | 0.2799 | 0.4769 | 1.0009 | 0.5261 | 0.8315 | 3.6472
0.85 | 0.2309 | 3.9244 | 0.5407 | 0.3539 | 0.9070 | 1.0670 | 0.8371 1.4863 | 3.4387
0.95 | 0.2594 | 7.3467 | 0.5022 | 0.4697 | 0.7643 | 1.1262 | 1.2681 | 2.5974 | 3.890

Table 4.2 Efficiency ratios of SEq(A)and SEg,(A) to SE g, (1) over various
A —values,(n=30, N =1000) ,n, =SEq,, (1)/SEq, (1),
ry=SEG, (A)/SEG, (A), ry = SEG, (A)/SEq, (4).

Table 6.2:
1 Normal (0,1) Exponential (1) Log normal (0,1)
4 ¥y r3 n r r3 4| ) 13

005 | 33123 | 27.7048 | 0.1196 | 17.0144 | 251.952 | 0.0675 | 27.5037 | 564.5886 | 6.0487
0.15 | 34278 | 162241 | 02113 | 13.8289 | 113.8064 | 0.1215 | 27.7619 | 262.00 | 0.1060
025 | 3.6090 | 9.1581 | 03942 | 115279 | 457688 | 0.2547 | 21.8450 | 124.3933 | 0.1756
035 | 35141 | 43604 | 0.8059 | 92244 | 15.1484 | 0.6089 | 15.4289 | 37.3292 | 0.4143
045 | 3.1615 | 1.8083 | 1.7484 | 67014 | 42133 | 1.5904 | 11.9336 | 109204 | 1.0428
055 | 3.1776 | 1.8445 | 1.6929 | 59344 | 13705 | 43301 | 9.6563 | 2.0449 | 4.7220
065 | 27778 | 41757 | 06652 | 4.8689 | 1.3358 | 3.6448 | 7.9639 | 13395 | 5.9956
075 | 2502 | 89095 | 02808 | 35755 | 1.7019 | 2.1009 | 6.9327 | 15805 | 5.3664
085 | 22419 | 16.9981 | 0.1378 | 3.0151 | 2.563 1.1764 | 41077 | 1.7755 | 23135
0.95 19354 | 283179 | 0.0684 | 2.3979 | 3.7564 | 0.6384 | 3.0674 | 19774 | 15514
Comments:  Note that (i) g, (4) performs better in non-normal F over

normal F whenever A €(0,0.5) and is uniformly best for all A when compared

to g, (4) and g, (1) based on samples from any F .

ii) For Normal F, g, (4) is better than g, (1) for estimating median of F,

whereas g, (1) is better for estimating percentiles away from centre of F .
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For non-normal F, g, (A) is better than g, (1) for estimating upper
percentiles whereas g, (1) is better for estimating lower percentiles of F .
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