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ON CHARACTERIZATION OF CONTINUOUS DISTRIBUTIONS
CONDITIONED ON A PAIR OF NON-ADJACENT DUAL
GENERALIZED ORDER STATISTICS
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ABSTRACT

A generalized family of continuous distributions have been characterized through
conditional expectation of dual generalized order statistics, conditioned on a pair
of non-adjacent dual generalized order statistics. Further, some of its important
deductions are discussed.

1. INTRODUCTION

Kamps (1995) introduced the concept of the generalized order statistics (gos) .
Using the concept of gos, Burkschat et al. (2003) introduced the concept of the
dual generalized order statistics (dgos) as follows:

Let X be a continuous random variable with the distribution function (df)

F(x) and the probability density function (pdf) f(x), xe(«, ). Further, let
n-1

neN, n>2, k=1, M=(m;,my,---,m3)eR™", M, => m;, such that
j=r

7, =k+n—r+M, =1, for all re{l,--,n—1}. Then X (r,n,m,k)
r=12,---,n are called dgos if their joint pdf is given by

n-1 n-1
k[HmJ LH[F(Xi 1" f(xi)J[F(Xn)]klf(xn) (1.1)
j=L i=1

for F1(1)>x >x, >--->x, >F (0).

Here we will assume two cases:

Casel: m=my,=...=m,;=m

Casell: yj=y;, i=] forali,je(,--n)

For Case I, the pdf of dgos X “(r,n,m,k) is given by (Burkschat et al., 2003)

Cr—l
(r=1!

fr ()= [F T g (F () f (%). (1.2)
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The joint density function of X “(r,n,m,k) and X" (s,n,m,k) is

— Csfl m r-1
frs 000 = e sy —pilF 001" 100 TR (0]

[ (F) = (FOOF " FWMPS (YY), a<y<x<p  (L3)

The joint pdf of X“(r,n,mKk), X'(j,n,mk) and X (s,n,mk),
1<r< j<s<n, cansimilarly be given as

fr s OGLY)=Crjsn [FO)I™ g2 (F (%)) [hy (F(t)) =y, (FOop

x [ (F(¥)) =y (FOT T FOI™ [FOTS™ 00 £2) F(y),

a<y<t<x<pg, 1.4)
where
R |
hp(X) =< m+1
—logx , m=1
and

Im (¥) =hp (X) —hy, @), x€[0,1) .
Therefore conditional distribution of X “(j,n,m,k) given X (r,n,m,k)=x
and X (s,n,m, k) =y is given by

(s—-r-n!'m+1)

fi‘ r,s(t|X'Y): Gor-Di(s—]-1!
[{F003™ —{F 3™ KF O™ —{F(y3™ 1 .
[FOI" £ (),
{FeO™ —{FI™ T
a<y<t<x<p. (1.5)

For Case Il, the pdf of dgos X (r,n,m,k) is given by (Burkschat et al.,
2003)

fr()=Cr (0D & (NIFT ™ (1.6)

i=1

The joint density function of X (r,n,m,k) and X (s,n, m,k) is
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fx (rn @i k) X (s, k) (X Y) = Csy F(X) za(r)(s){F(Y)}

i=r+l F( )
S 1) 1)
Xéai (NIF )] FO0 F(y) (1.7)

The joint pdf of X'(r,n,mk), X (jnmk) and X (s,nmKk),
1<r < j<s<n, may similarly be given as

r 7i
f,. j,s(X,t,y)ZCs_l[z a; (r) (F(X))}’ij { Z (r)(J) {F(t)} J

i=1 i=r+l F(X)

S i 7i
x{z ai(”(s)r(y)} J P00 1O 10D cyctex<p.  @8)

i+l F() F(x) F(t) F(y)

Hence the conditional pdf of X(j,n,m,k) given X (r,n,m,k)=x and

X"(s,n,m k)=y, 1<r< j<s<n, is given by

Lo {F(t)} > all) {F(y)}y' ()
[i:zr;rl W F(x) izzj;rl ©) F(t) F(t)

firs X y)= L
: a0 (s)) U '
PR
(1.9
where
Cr_]_:lL[}/i, 7i:k+n—i+Mi (110)
a;(r)= H -t yi#7j, 1<i<r<n (1.11)
J;tl i
and
ai(r)(s)zjgrl(yjiyi), r+1<i<s<n (1.12)
J#i

Khan et al. (2009) have characterized family of continuous distributions when
conditioned on a non-adjacent single dgos. We, in this paper, have extended the

result of Khan et al. (2009) when conditioned on a pair of dgos.
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2. CHARACTERIZATION OF DISTRIBUTIONS

The result will first be proved for y; = y; and then it will be deduced to the case

when m; =m;j=m, i,j=1,....n-1.

Theorem 2.1: Let X*(i,n,rﬁ, k), i=1...,n be the dgos from a continuous
population with the df F(x) and the pdf f(x) over the support (¢, f), and
h(t) be a monotonic and differentiable function of t. If for two consecutive
values r and r+1, 2<r+l< j<s<n

s X Y)=E[N(X(j,nm k)X (,n,m,k)=x, X (s,n,mk)=y],

I=r,r+1 (2.1)
existand g(x,y) is afinite and differentiable function of x, then
G KD 8y @2)
“UER) B S00Y) 1956V~ o (% V)] '
and
[FOI™ BF (%, Y) B
=exp — | A((t,y)dt], (2.3)
B (5,Y) p[ bt }
where
Bi(ey)=| > a®s >{ (y)} 24)
[lzr‘ll-l F( )
and

0
agj‘rys(xly)

A (x,y)= . 2.5
S PR R SRR @9)

Proof: We have, in view of (1.9) and (2.1)

931.s063) B 0)=[[00) BLuO B4 y) ot (26)
Differentiate both the sides w.r.t. x, to get
0 s 0 s O 4
agj\ r,s(XvY)Br(Xny)+ gj\ r,s(xl y){&Br(X’ y)} J. h(t){ BJ(X t):|[B (t y)] ()

2.7)
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S
after noting that B} (x,x)=0,as >’ al(s)=0 (Khan etal., 2006).

i=r+1
Since al"(s)=(y,,1 —7) al"(s), i=r+2,...s
Hence,
7i
B (xy)= (r+1) (Y)} 1B _K( )[ s }
+1(X y) l%za (){F() 7+l ( y) f() ( y)
(2.8)
Thus (2.7) reduces to
0 Sy ) f(x)
S0l s XY BIOY) =05 g X Y) = G s DT Braa(x,y) = o5 )
or,
ﬁg- (x,y)
19 Brathl) e As(%,) (2.9)
FX) B (xY) [g”rﬂs(x Y) =95 rs (X Nl
implying that
. 2 Bi(xy) 2 4jraxy)
Vi1 (2.10)
F(X) B (X, y) [g J‘ r+l,s (X, y) - g ]‘ r,s (X! y)]
Integrating both the sides w.r.t. x over (x, ), we get (2.3).
Corollary 2.1: It may be noted that for y; #y; and m; =---=m;; =m=-1.
aW(e)=— it - t @2.11)
S S (i—r=1!(s—i)!
1 i) (m+1) (i-r=1t(s-i)
j=r+l
i#]
Thus,
[FOOI ™ BE (X, Y)
BI(5.Y)
[F ()]7r+1[|:(y)j 1 ZS: (_1)s—i (s—r-1)! (F(Y)]ﬂys
_ FOO) M+ (s-r-1!ifm (i-r-D!(s-i)!' F(x)
FI® : >y ET gy

(Mm+2)* " (s—r-Dis (i-r-1)}(s~i)!
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[F(x)™t D 11— M (s-r-1)
F(X)m+1

[1_ F (y) m+1](s—r—1)

implying that

{FOY™ [ 1 )

LFy eXp{ e Al“’y)dt]m 1 (212)
and

|OgF(X)_ _ _; Y -

'09|F(y)_1 eXp{ (S—r—1)jx Al(t'y)dt] m=-1 (2.13)

as ai{F(x)}”1+l ={F(x)}™ logF(x), which tends to logF(x) as m— —1.
m

Remark 2.1:  In the limiting case as y >« , at y; =0, Theorem 2.1 reduces

to
e (t
F(x)=exp — 1 J.'B g”r() dt |,
Vr+l X [gj‘r-ﬂ(t)_g”r(t)]

where
gj| L) =E[h(X(j,n,mK))| X(r,n,m,k)=x]

as given by Khan et al. (2009). This is true for both the cases y; = y; and

=m>-1.

mi ij

Theorem 2.2: Let X*(i, n, m, k), i=1...,n be the dgos from a continuous
population with the df F(x) and the pdf f(x) over the support («, 3) and
h(t) be a monotonic and differentiable function of t. If for two consecutive
values s—1and s, 1<r< j<s-1<n,

91 6 Y)=E[N (X (j,n, @, k)| X (r,n,m, k) =x, X (s,n,m,k)=y],
l=s-1s

exist, then

o, 5
fy) 5Br(x, y) ) 59” rs(XY)

FOO)  BIY)  [95)rs600) =050 (6 V)]

Vs (2.14)
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and

S Yi~7s
> () [%] =al’(s) exp[— [} Az2(x) dt]
i=r+1

where B} (x, ) is as defined in (2.4),

and
9
ay .
[gj‘ r,S(X’y)_gj‘ rﬁs_]_(xly)]

gj‘r,s(x’y)

A2(X1y) =

113

(2.15)

(2.16)

Proof: Differentiating both the sides of (2.6) w.r.t. y and proceeding as in the

Theorem 2.1, we get

gg- (xy)
f(y) BS(xy) gy St 2.17)
FO) BS(xY)  [9j)rs (XY =9 rsa (W]
- F(y) 0 s
h BSL(x,y)=| y. BS(x,y) - —22 = BS(x,
where  B; (X, Y) [75 r(X ) () oy r (X y)j
as a”(s-D)=(rs —7) al(s).
That is,
0 s 0
—B; (X, — 0. X,
7/ f(y)_ay I’( y): ayg”r’s( y) |
® F(y) BIS»(X, y) [g” r’s(xv y)_g” r’S,]_(X; y)]
Therefore,
s Yi~7s
z ai(r) (s) [ﬂ} =a§')(s) exp[— fyAz(x, t)dt}
i=r+1 F(X) “
and hence the result.
Corollary 2.2: 1t may be noted thatat y; = y; but my =---=m, 43 =m>-1.

S G F(y)]ﬂ’i% .
22 (s)[ﬂx) [ Fe™T
al"(s) F(x)™

implying that
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Fo™ _

{Foo3™t
Remark 2.2: In the limiting case as x — f, at r=0, Theorem 2.2 reduces
to

1 y
1—exp(—mja Az(x,t)dtj, m>-1. (2.18)

S

9y (©)
i F Vi7ls — s - ils dt |,
E a; () [F(y)] a;(s) exp{ J. CHECEEHIEG) ]

where gj‘s(y)zE[h(X(j,n,r“ﬁ,k))| X(s,n,m,k)=y], for y; #y; and for

m=---=m_;=m>-1

' t
[F(y)]””l:l—exp{— 950 d}

1 j i
(s-0)% [g (1) -9} 51 0]
as given by Khan et al. (2009).

3. EXAMPLES

For adjacent gos at j=r+1, s=r+2 and m,4 >-1, it can be seen that
(1.11) reduces to

Mg+ {FOI™ £

f t|x,y)= : 3.1)
r+1‘ r,r+2 | [{F (X)}mr+l+1 _{F (y)}mwl-%—l]
and therefore, corresponding to (2.12) and (2.18), we have respectively
— mp 1+l
1-{F()} _—1-e™" (3.2)
L-{F(y)}"*
and
Mp i+l
{F(N} _=1-e72, (3.3)
{F 0}
where

B y
=7 At y)dt, 1, =" Ap(x, tydt.
Thus we have,

9rir,s (% Y)=E[N(X(r,n,m, k)| X7 (r,n, @,k)=x, X (s,n,m,k)=y]=h(x)

Isir.s (% Y)=E[N(X " (s,n, M, k)X (r,n,m,k)=x, X (s,n,m,k)=y]=h(y)
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and

g r+1jr,r+2 (X, Y)

=E[h(X (r+1,n,m k)| X (r,n,m k) =x, X (r+2,n,mk)=y]l=g(xY).

(3.4)
Therefore,
aaxg (x,y)
S T ETeRYy 49
and
;yg x,y)
Ay (X, Y) = 3.6
2= T ey —h)i (39
. _ ¢ [ah(y)+b]** —[ah(x) +b]*" b ~ 3
Vol a(c+1) [ah(y)+b]° —[ah(x)+b]° & crt (3.7
if and only if
1—{F ()} —[ah(x) + b]°, (3.8)

where a, b, ¢ and h(x) are so chosen that F(x) isa df .

Proof: To prove (3.8) implies (3.7), we have

. A [F@O]™ f (1)
Y)=(Mmpy +1
A e T I

_ac ¢ Ly
50} { [ah(t) + b]*th(t)h'(t) dt,

where
B(x,y)=[L-{F(y)}" " -1 -{F(x)}™1"1]

=[ah(y) +b]¢ —[ah(x) +b]°

B . cC ah(x)+b .1(U—Db
=9(x, y)—B(X, " Fancyyonl (—a Jdu

implying that
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¢ [ah(y)+b]** —[ah(x)+b]*" b
a(c+1) [ah(y)+b]® -[ah(x)+b]® &

gxy)=

Now to prove (3.7) implies (3.8), we have

ach'(x) [ah(x) +b]°*
[ah(x) +b]® —[ah(y)+b]¢

Ar(xy)=-

Integrating both sides w.r.to x

_{ah(x) +b}° }

B
— (t,y)dt=log|1
L A { {ah(y) + b}

Therefore in view of (3.2)

fah(x) +b}° _1-{F(3™="
{ah(y) +b}°  1-{F(y)}""

implying that

1-{F(x)}™+* = K [ah(x) + b]°,
where K is a normalizing constant.

But F(a)=0. Thus,

1-{F(x)}™1* =[ah(x) +b]°

and hence the result.

. ¢ [hOII™ —[h(yI*™1 h() h(y)
i) g(xy)= , c#l (3.9)
(c-1) [h()1® ~[h(Y)]°
if and only if
1-{F()}" 1" =a[h(x)] ¢ +b, (3.10)

where a, b, ¢ and h(x) are so chosen that F(x) isa df .

Proof: For 1—-{F(x)}™* =a[h(x)] " +b, it is easy to show that

¢ [EOI" ~[hI"'T h(x)h(y)
(c-D) [hGOT® ~[h(y)T°

Now to prove (3.9) implies (3.10), we have

gxy)=
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A(xy)= ,
' h(x) [{h(x)}* —{h(y)}°]

and hence the result.

Remark 3.1:  For 1—-{F(x)}™** =a[h(x)]™® + b, we have

a) At c=-1, g(x,y):M:AM.

b) Atc=2,g(x,y)=1 ! =H.M.

o)
774_7
2\ h(x) h(y)

0 Atc:%,g(x,y): h()h(y) =G.M.

¢ [ah(x)+b]*" —[ah(y) +b]** b

R Ty [ah(x) +b]® —[ah(y) +b]® &’ e
if and only if
{F(0}™ " =[ah(x) +b]°,
where a, b, ¢ and h(x) are so chosen that F(x) isa df .
Proof: Proceeding as in example (i), we get
g0xy)=—C [ah(x) + b]* —[ah(y) +b]** b oy

a(c+1) [ah(x)+b]° —[ah(y)+b]¢ &’
Now to prove (3.14) implies (3.15), we have

ach'(y) [ah(y) +b]°*

A (X, y) = .
[ah(x) + b]c —[ah(y)+ b]C

Integrating both the sides w.r.t y

__{ah(y)+—b}0}_

— YAy (x tydt=1
jaAz(x t) dt og{l fah(0 £ 5"

In view of (3.3), we have

{FY™ _{ah(y) +b}°
{F()" 2 {ah(x) +b}°

implying that

117

ch' () {h(y)}° u=4wp—“m“”{+”J
{a(h(y))® +b}

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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{F ()} =K [ah(x) +b]°

and hence the result.

iv) Formj =---=m,;=m>-1
O MR L R LG (3.6)
(s—1)
if and only if
1-{F()}™ =ah(x) +b, m>-1, (3.17)

where a, b, ¢ and h(x) are so chosen that F(x) isa df .

Proof: It is easy to prove (3.17) implies (3.16). To see that (3.16) implies
(3.17), we have

h(x) {ah(x) + b}

A ’ = I =—| 1——

=y 09( {ah(y)+b}}
_h'(y) _ _1-{ah(y) + b}
Y= Ty 2T log(l 1—{ah(x)+b}]'

Also from (3.2),
L{FOO™ _; -n _ [3h() +b]
1-{F(y)3™ [ah(y) +b]’
and from (3.3)

FOI™ | 1. _1-[ah(y) +b]
{FO0y™ 1-[ah(x) +b]’

implying that

1-{F()}™ =ah(x) +b, m>-1.
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