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ABSTRACT

The present paper analyses a stochastic linear transshipment problem with
uncertain demands and some prohibited routes. The objective is to maximize the
net expected revenue, i.e. the total expected revenue minus the transportation and
transshipment costs. The stochastic transshipment problem is reduced to an
equivalent deterministic transportation problem for which a solution algorithm is
developed and numerically illustrated.

1. INTRODUCTION

Many a times, instead of shipping directly from source to sink, the goods are
sent via other sources and sinks and are transshipped at these intermediate
points. Such transshipment problems often occur in the distribution system of
national departmental stores chain. Transshipments also occur in the military
logistics where direct transportation of goods to destination may not be
advisable for security reasons. Orden (1956) showed that a transshipment
problem can always be converted into a direct shipment transportation problem
and solved by available methods. However the situation becomes complicated if
the demands at the destinations are uncertain and must be treated as random
variables instead of fixed constants. Complications are further enhanced if some
routes are prohibited due to reasons such as security, road construction, weight
limits on bridges, unexpected floods, transportation strikes and local traffic
ordinances etc. The purpose of this paper is to study a stochastic linear
transshipment problem with uncertain demands and some prohibited routes. No
doubt, the prohibited routes may sometimes cause infeasibility Currin (1986),
but this study is concerned with feasible problems only. For dealing with
uncertainty of demands, we have used the technique of Dantzig (1956, 1963) as
applied by Javaid et al. (1998, 1999).

2. NOTATIONS AND THE FORMULATION OF THE PROBLEM

Consider a transshipment problem with m sources numbered 1,2,---,m and n
sinks numbered as m+1,m+2,---,m+n. The sequential numbering of sources

and sinks is found convenient because in a transshipment problem every source
and sink acts both as a shipping point as well as a receiving point of goods.

Let
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a;: the quantity available at source i=1,2,---,m

bj : the quantity demanded at sink j=m+1,m+2,---,m+n

Xjj:  the quantity shipped from station i to j (i, j=12,---,m+n)

cij:  the per unit shipment cost from station i to j (i, j=12,---,m+n)
t; quantity transshipped at the station i (i=1,2,---,m+n)

l;: per unit transshipment cost (including unloading, reloading, and
storage etc.) at the station i (i=1,2,---,m+n).

The problem is to determine X;; so as to minimize the total cost of transportation

and transshipment. It may be mathematically stated as under:

Problem P;:  Find xjj so as to

m+n_ m+n m+n

=1 j=1 i=1
subject to
mn, a; +ti i=1,2,"',m (2 2)
Xii = .
=t LY i=m+1---,m+n
m+n uj j:1,2,...,m ’3
Xii = .
= 0t +u; j=m+1,---,.m+n (23)
Xjj 20 forall i and j (2.4)
m+n

Z* indicates that the term j=i is excluded from the sum. The constraints
j=1

(2.2) implies that the total quantity that leaves the source i (=1,2,---,m) is
equal to the quantity available plus the quantity transshipped and the total
quantity that leaves the sink i (=m+1,m+2,---,m+n) is equal to the quantity
transshipped. Similarly constraints (2.3) imply that the total quantity that arrives
at asource i (=1,2,---,m) is equal to the quantity that source transships and

the total arriving at a sink is equal to the demand at that sink plus the quantity
that the sink transships. Constraints (2.4) are the usual nonnegative restrictions.
Here t; are unknown, so we impose an upper bound t, (say), on the amount

that can be transshipped at any point, so that

ti Zto—xii, i=1,2,"',m, (25)
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where x;; is a nonnegative slack. After substituting (2.5) in (2.1) to (2.3) and on

simplifying the original transshipment problem P is reduced to the following
genuine transportation type linear programming problem.

Problem P,:
m+nm+n m+n
Minimize Z= Z Zcijxij +z|it0
i=1 j=1 i=1
subject to
m+n a; +1t, i=1,2,---,m
Xij = . (26)
iz t, i=m+1---,m+n
m-+n t, j=12,---,m ”7
X.. = . .
E " |bj+t,  j=m+l.m+n @7)
Xjj 20, (2.8)
where c; =—l;, and the asterisk (*) on the summations has now been

disappeared due to the inclusion of x;; .

Here, the upper bound t, can interpreted as the size of a fictitious stockpile at

each source and sink which is large enough to take care of all transshipments.
Assume initially a value for t, which is sufficiently large to ensure that all x;

will be in the optimal basis. Such a value can be easily found as the volume of
goods transshipped at any point cannot exceed the total volume of goods
produced (or received). Hence, set,

m
t0=zai (29)
i=1
which ensures that t, is not limiting. The unused stockpile at the
stationi=1,2,---,m+n, if any, will be absorbed in the slack x; .

Thus, the mxn order transshipment problem P, has been converted into a direct
shipment transportation problem P, of order (m+n)x(m+n) which can have

no more than 2(mxn)—1variables different from zero. However, (m+n) of
these non zero variables are the slack variables x;j; representing the unused
stockpile and hence there are in fact no more than (m+n-1) variables of
interest which are different from zero.

So far we have been silent about the nature of the demands b; and have treated
them as fixed constants. However, in real life the demands are usually uncertain.
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So, in order to make our study more realistic, we assume bj to be independent
discrete random variables with known probability distributions as below:

Demand b; by j

J< b2

< iji

Pr(bj =by;) = py; P1j P2j PH;i

ZTH;j = PHjj

Hj Hj
_ 7 =2 Pnj@) | 72 =2 Puj
Pl’(bj thj)—ﬂ'hj 1) E J 2] h§2 J

However, the moment we treat b; as random variable, a new problem begins to
rear its head. The constraints (2.7) fail to make sense. To make the problem
meaningful it has to be reformulated into a deterministic equivalent (1956,
1963).

3. EQUIVALENT DETERMINISTIC PROBLEM

To take care of the randomness of demands, instead of minimizing the total cost,

we take our objective as the maximization of the net expected revenue (i.e., total
expected revenue minus transshipment and transportation costs).

Let s; be the per unit selling price of the product shipped to the sink j and let
fi(sj,Y;) be the yet unknown function that describes the expected revenue
from the sink j if a net total of Y; units are shipped to that sink. So the net
expected revenue is:

m+n m-+nm-+n m+n
R= > i(s5.Y)) = 20 2 cix — 2 lito
=1 i—1 j=1 i-1

m+n

Here the third term of the right hand side viz. > I; t, is a constant that can be
i=1

ignored but adjusted in the end. Since we have to maximize R (or minimize —

R), so, after ignoring the constant term, our objective becomes:

m+nm+n m+n
Minimize Z= ZZCU—XU - ZfJ(SJ’YJ) (31)
i=1 j=1 =1

To determine the function f; (s;,Y;), note that Y;, the net quantity shipped to
sink j, can be any amount between the lowest value b;; and the highest value
ijj in the probability distribution of the demand b;, j=1,2,---,n.
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If 0<Y; <by;j, then each of the Y; units shall be absorbed with probability
ﬂ'lj (: 1) .

Hence, the expected revenue is sjnlej .
If b;j <Y; <by;, then each unit upto b;; shall be absorbed with probability
7 and each of the additional units (Y; —by;) shall be absorbed with
probability 7;.

Hence, the expected revenue is sjzy;by; +5j755 (Y; —byj).

So, ingeneral, if by <Y; <by,,j, then the expected revenue is

Sj{mjbyj +7aj (02 —byj) +--+ 755 (b —bpgj) + 7hya5 (V5 —by)}

Let us now break y; into incremental units yy; (h=12,---,H;) as:

Yi=Yij + Y25+t Yhi £t Y (3.2)
where,

Ogylijl] Zle

OSyZ]SbZJ _blj :sz (33)

0<yp,j <buj by, =Ry j

Relation (3.2) makes physical sense only if there exists some h=h; (say) such
that all intervals below the h; —th interval are filled to capacity and all intervals
above it are empty i.e.

yhj:th (h=1,2,"‘,hj —1)
yhj=0 (h:hJ +1,“',HJ')

Assuming for the time being that the conditions (3.4) hold, the total expected
revenue from sink j is:

Hj
f; (Sjayj):hzsj”hj Yhj -
|

Substituting the value of f;(s;,y;) in (3.1) and treating both x; and yy; as
decision variables, the deterministic equivalent to Problem P,, is:
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Problem Pj:
m+nm+n m+nHj
Minimize  Z=" >"c; X;j + 2. > dyi Vi 3.5)
i=1 j=1 i=1 h=1

Whel‘e (th —Sjﬂ'hj )

subject to
m+n a; +t i=12,---,m
Xi ={ AR (3.6)
i to iI=m+1---,,m+n
m+n
inj =tO’ j=1,2,"',m (37)
i=1
m+n Hj
ZXij—thj =t0, j=m+1.,"',m+n (38)
i=1 h=1
Xij» Ynj 20 (Vi, j,h) (3.9
Yoj SRy (Y ],h) (3.10)

and subject to the additional stipulation that the constraints (3.4) are also
satisfied.

Fortunately, it turns out that (3.4) do not restrict our choice of optimum solution
in any way. This we prove in the following theorem.

Theorem 3.1: A feasible solution to Problem P can always be improved if it
violates any of the constraints (3.4).

Proof: Let (xi’} : y;j) be a feasible solution to Problem P; obtained on ignoring
(3.4). The value of Z at this solution is:

. Mm+nm+n . m+nHj .
Z0 =2 2.Ci Xij + 2, > i
i-1 j=1 i=1 h-1

i0

Suppose that there exists some h=h° and j = j° such that y;ojo < RhOJ and

*
yh0+1’j0 > O

It is clearly a violation of the constraints (3.4).
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Now, we increase y:(,jo and decrease y

*

RO, j0 by equal amounts & (>0) such

that the feasibility of the solution is not disturbed. The new value of the

objective function becomes: Z° =Z" +6(d ;ojo -

But (do 0 —d

ho+l,j0) )

:0+l'jo)s0, as 7y > 7y, j forall hand j.

Hence it follows that Z° <Z”~.

This result shows that if an optimum solution to Problem P; is obtained after
ignoring (3.4), it shall on its own satisfy (3.4). Thus, to solve problem P3, we
may simply ignore the constraints (3.4).

i)

iv)

4. PRELIMINARIES TO THE SOLUTION OF PROBLEM P,

It is assumed that the set of all feasible solutions of Problem P; is regular
(i.e. non- empty and bounded).

Problem P is a transportation type linear programming problem with upper
bound restrictions on some variables. So, its global minimum exists at a
basic feasible solution of its constraints.

We shall, hereinafter, call the constraints (3.5) through (3.8) as the original
system and the constraints (3.5) through (3.9) as the capacitated system. As
none of the constraints in the original system is redundant, a basic feasible
solution to the original system shall contain 2(m+ n) basic variables. For

the capacitated system also, a basic feasible solution shall contain 2 (m + n)

basic variables and the same may be found by working on the original
system provided that some of the non basic variables are allowed to take
their upper bound values (1963).

The special structure of Problem P, permits us to arrange it into an array as
shown in table 1.

In the table below, there are (m-+n) rows in columns j=12,---,m and
(m+n+H) rows in columns j=m+1---,m+n. Here H =max.Hj, so that

there shall be some empty boxes near the bottom of the table in
columns j=m+1,---,m+n. These empty boxes shall be crossed out.

Absence of the row totals for yp,;'s in the table indicates that there are no row

equations for yy,; variables. Besides, to obtain the column equations (3.8), each

Yhi

has to be multiplied by (-1). We have omitted (-1) from y; boxes for

convenience.
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Table 1:
X1 Xim Xim+1 Xim+n a +1,
Cia Cim Cima Ciman
Xml Xmm Xm m+1 Xm m-+n am + 1:0
Cm1 Cmm Cram+1 Cmmen
Xm+11 Xm+1m Xm+lm+1 Xm+1m+n to
Cm+11 Cm+im Cmiim+1 Cm+im+n
Xm+n1 Xm+nm Xm+n m+1 Xm+n m+n to
Cm+n1 Crm-+nm Crenmsd Chsnmin
ty t, Yimia  Rima Yimsn Rimsn
dlm+1 d1m+n
YH m+1 RH m+1 YH m+n RH m+n
d H m+1 d H m+n
to to

INITIAL BASIC FEASIBLE SOLUTION

To start with, we fix the demands b;'s approximately equal to their expected
values such that

m+n m
DT
j=m+1 i=1

and also such that for all j except j= ], each b; falls at the upper end of one
of the intervals Yhi into which bj has been divided, i.e.

hi
bj => Ry
h=1
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for some h} <H; and for all j except j= j* (the b; can always be so chosen
that it is done).

With these fixed demands the upper portion of the Table 5.1 resembles a
(m+n)x(m+n) standard transportation problem for which an initial basic

feasible solution with {2(m+n) —1} basic variables is obtained by any of the
several available methods. Now, in each of the columns j=m+1,---,m+n, the
values of the non basic yy;'s are entered at their upper bounds in turn

h=1,2,... until we have entered enough non basic yy;'s so that their sum over
h is equal to b;. Obviously, we shall never have to enter y; below its upper

bound except in column j = j*, where the last nonzero entry will be yhj* < th* .

This last entry and the {2(m+n)—1} basic x;'s found earlier constitute the
required initial basic feasible solution with 2(m+n) basic variables. In case the

last non zero entry in column j~ is also at its upper bound and then we take the
last yy,; entry of any column as our 2(m + n) —th basic variable.

6. Optimality Criteria

Let the simplex multipliers corresponding to the objective function Z (Problem
P3) be u; and Vj Vi, j=12,...m+n).

These are determined by solving the following equations.

Cij +Ui +Vj ZO forbaSiC Xij
. (6.1)
dhj _Vj =0 forbasic yhj
These are 2(m+n) linear equations in as many unknowns u; and v; and can

be easily solved. Let the relative cost coefficients corresponding to the variables
xj and yp; be Cj and dp;. These are determined by solving the following

equations.

CIIJ :Cij +Ui +Vj

fornonbasic x;;

, . (6.2)
dp =dp; —V;j fornonbasic y;

It can be easily shown that for a given basic feasible solution (X;, yy) of the

Problem Ps, the value of the objective function Z is:

m+n m+n m+nHJ m+n m+n
z=> ZCUXU +> Zdhj)’m Zu (& +to)+ D ujt, +th

i=1l j=1 j=1 h=1 i=m+1

(6.3)
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Here, Cj; =0 for all basic x; and also the values of the non basic x; are zero.
So, the first term on the right hand side of (6.3) vanishes. Similarly d{; =0 for
the basic yy,;, but as regards the values of non basic y,;'s - some are zero and

the others are at their upper bounds. Hence,

m+n*Hj . m m-+n m-+n
Z= 3" TdpRy —4 U (@ )+ X Uity + D Vit (6.4)
i=l h=1 i=1 i=m+1 j=1

where Z “ indicates the sum over those non basic Yhj Which are at their upper

bounds. Now if the value of any one of the non basic variables xg or vy, is
changed to:

)?st Z(Xst 'H9) or yrt = (yrt +l9),

with the other non basic variables remaining unaltered and the basic variables
adjusted to maintain feasibility of the solution, then the improved value of Z
shall be:

Z=2+60Cy or Z=Z+6d,,
as the case may be.

Note that we take plus sign if y,, =0 and minus sign if y; =R

The objective function will improve iff Z —-Z <0, i.e.
(Z+6Cy)-Z2<0 or (Z+6d,)-Z<0

= 0Cy <0 or +60d, <0

= Cyu<0 or +d,<0

(Since, in the non degenerate case & >0 and in degenerate case 6 =0.

= Z=Z.

Thus, the current solution is optimum iff

Cj =0 (V non basic xj;)
dp; >0 (V nonbasic yy, at zero level) (6.5)
dp; <0 (V nonbasic yy, at upper bound)

If any of the optimality criteria (6.5) is violated, the current solution can be
improved. The non basic variable which violates (6.5) most severely is selected
to enter the basis. The values of the new basic variables are found by applying
the usual @ —adjustments. It should, however, be kept in mind that the
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coefficient of each yy,; in column equations (3.8) is (-1). The variable to leave

the basis is the one that becomes either zero or equal to its upper bound. If two
or more basic variables reach zero or their upper bounds simultaneously then
only one of them becomes non basic. Should it happen that the entering variable
itself attains upper or lower bound (zero) without simultaneously making any of
the basic variables zero or equal to its upper bounds, the set of basic variables
remains unaltered; only their values are changed to allow the so-called entering
variable to be fixed at its upper or lower bound.

7. PROHIBITED ROUTES

So far all routes from any source or sink to other sources or sinks have been
treated as open and usable but in reality some routes may be prohibited due to
traffic regulations or other practical considerations. The prohibited routes may
sometimes lead to infeasibility even if the total supply exceeds or equals the
maximum total demand (1986). If so, one has no option but to adjust the
supplies or the demands in order to obtain a feasible solution.

However, in a transshipment problem with a few prohibited routes, infeasibility
rarely arises because there are generally several alternative routes between any
two points. So, our problem is only to modify the algorithm in such a way that
the prohibited routes are eliminated from entering our solution as we move
towards optimality. This is easily achieved by assigning a very high cost (say
‘M’) to each of the prohibited routes.

8. NUMERICAL EXAMPLE

Consider the following transshipment Problem with three origins named S, S,,
S;and two destinations named S,, Sg. Table 2 gives the per unit transportation

cost between the various origins and destinations, the per unit selling prices s;

of the product at the two destinations and the supplies a; available at the
origins. Shaded cells indicate the prohibited routes.

Table 2:
S, S, S S, Ss Supplies a;
S 0 4 6 3 10
S, 3 0 8 2 2 5
S3 6 8 0 0.5 1 6
S, 3 2 0.5 0 5
Ss 2 1 5 0
Demands b; b, bs
Sj 10 5

For simplicity, we take the transshipment costs I, =0, V i1=1234,5.
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The probability distributions of the random demands b;, j=4,5 are as given in

the following table 3 along with the computed values of zy,; , dy,; and Ry; .

Table 3:
J b Prj Zhj dpy =S 7y; Ry
9 0.3 1.0 -10 9
4 12 0.5 0.7 7 3
17 0.2 0.2 2 5
5 7 0.2 1.0 5 7
10 0.8 0.8 -4 3

Assigning a very high cost M to each of the prohibited routes, and assuming an
additional fictitious stockpile equal to total supply of 21(=10+5+6) units at
each of the 5shipping and 5 receiving points, the deterministic version of the
problem is as given in table 4 below. The last cell of column 5 is empty and

hence shaded.

Table 4:
X11 X12 X13 X14 X15 31
6 3 M
X21 X22 X23 X4 Xo5 31
8 2 2
X31 X32 X33 X34 X35 27
0 0.5 1
Xa1 X42 X43 X44 X5 21
0.5 0 5
X51 X5 X53 Xs54 Xs55 21
1 5 0
21 21 21 33 30
Y11 Y12
-5 -10
Yo1 Yoo
-7 —4
Y31
-2
21 21
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Working tables for finding the optimum solution are prepared likewise. To avoid
confusion, the non basic variables at zero level are omitted and the non basic
variables at upper bound are encircled. Besides, Cj and dp; which violate the

optimality criteria (6.5) are also entered in the top right corner of the non basic
cells.

Iteration 1:

Step 1) To obtain initial basic feasible solution we fix the demands at b; =12
and b, =9, and then determine an initial basic feasible solution to the
(5x5) standard transportation problem above the double line in Table
8.3, by the North-West corner Rule. We get,
X11 =21, X4 =10, Xy =21, Xpu =2, Xp5=3, Xg3=21,
X35 =6,  Xgq =21, Xg5=21.
In order to obtain the IBFS to the deterministic equivalent
transportation problem of Table 4, we assign yy; entries at their upper
bounds (as far as possible) so that the column equations (3.8) are
satisfied, we get
Y11=9, ¥21=3, Yyp =7 and y, =2 (<Ry =3).
This provides the required initial basic feasible solution with X;1, X4,
Xo1, X992, Xoa, Xo5, X33, X35, Xaa, Xs5 and y,, as the basic variables.

Step 2) The simplex multipliers (uj,vj) and relative cost coefficients
(Cij,dyy), are determined from equations (6.1) and (6.2). These are also
recorded in the working Table 8.4.

Step 3) For the current solution, the value of Z =-108 is obtained from (6.4).

Step ) For the non-basic variables, the values of Cj; and dy; are calculated and
it is found that only C3, =0.5+3-4=-0.5 violates the optimality

criterion, obviously the current solution is not optimum and may further
be improved.

Step 5) Adding @ to X, we are led to the #-—adjustments as shown in table

8.4. The maximum possible value of @ is 8" =2. The new solution is
recorded in table 5.

Iteration 2:

Repeating steps 2 to 4, the new solution is found to be optimum. So, after the
second iteration the optimal solution obtained is:

Xll :21, X14 :10, X22 221, X25 :5, X33 :211 X34 :21
X35 :4, X44 :21, X55 :21 and ZOpt :_109
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Table 5:
a; Ui
0 4 6 3 M 31 1
2]-0 3] +6
3 0 8 2 2 26 2
4 -05 [6]-6
6 8 0 0.5 1 27 3
71]
3 2 0.5 0 5 21 4
M 2 1 5 0 21 4
© @
-10 -5
®
-7 -4
-2
V= -1 Vo= -2 V3= -3 V4= -4 V5= -4
Table 6:
a; U;
2 [10]
0 4 6 3 M 31 1
3 0 8 2 2 26 2
6 8 0 0.5 1 27 3
2
3 2 0.5 0 5 21 4
[ 21]
M 2 1 5 0 21 4
© (@
-10 -5
® 2
-7 -4
-2
vi=-1 Vo= -2 V3= -3 V= -4 V5= -4
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