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ABSTRACT 

Ting and Notz (1988) have only considered the construction of block designs for 

comparing test treatments with a control when the block size vk > , and have also 

given a catalogue of −A optimal designs for such comparisons. In this paper, we 

have constructed such a type of designs using a new method called cyclic shifts or 

set(s) of shifts. The important feature of this method is that the properties of a 

design can be obtained from the off-diagonal elements of the concurrence matrix 

without constructing the actual blocks of the design. These newly proposed 

designs possess the property of −A optimality for some specific values of v , b  

and block size k )( v> . 

 

1. INTRODUCTION 

In problems such as screening experiments or in the beginning of a long-term 

experimental investigation, it is desirable to determine the relative performance 

of new test treatments with respect to the control or standard treatment (Hedayat 

et al. 1988). Experiments to compare certain test treatments with a control 

treatment were first considered by Hoblyn, et al. (1954). Cox (1958) suggested 

augmenting an incomplete block design in test treatments with one or more 

replications of the control in each block to obtain a good design. Pearce (1960) 

developed a systematic approach for designing such type of comparative 

experiments and Pearce (1983) made two suggestions for such experiments; one 

is supplementation and the other is reinforcement (following Das, 1958). Pesek 

(1974) compared a balanced incomplete block design )(BIBD  with an 

augmented BIBD  suggested by Cox (1958) for estimating control-test treatment 

contrasts and noticed that the latter design was more efficient. Bechhofer and 

Tamhane (1981) developed the theory of incomplete block designs for 

comparing several treatments with a control. They did not consider the −A  or 

−MV optimality of a design but obtained optimal simultaneous confidence 

intervals. Their developments led to the concept of Balanced Treatment 

Incomplete Block )(BTIB  designs; Notz and Tamhane (1983) studied their 

construction. Constantine (1983) showed that a BIBD  in test treatments 

augmented by a replication of control in each block is −A optimal in the class 

of designs with exactly one replication of the control in each block. Jacroux 
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(1984) showed that Constantine’s (1983) conclusion remains valid even when 

the BIBD s are replicated by some divisible designs. 

Majumdar and Notz (1983) gave a method of obtaining −A  and −MV optimal 

designs among all designs for block designs. Hedayat and Majumdar (1984) 

gave an algorithm and a catalogue of −A  and −MV optimal designs. Ture 

(1982, 1985) also studied −A optimal designs and suggested their construction. 

He constructed A-optimal designs when the control treatment replication size, 

0r , is a multiple of b  for fixed v  and k . Hedayat and Majumdar (1985) gave 

families of −A  and −MV optimal designs. Notz (1985) proposed optimal row-

columns designs for comparing test treatments with a control. Majumdar (1986) 

and Hedayat, Jacroux and Majumdar (1988) considered the problem of finding 

optimal designs for comparing the test treatments with two or more controls.     

Jacroux (1987a, 1987b, 1988) gave new methods for obtaining −MV optimal 

design, and also gave catalogues for such designs. Jacroux (1986) also studied 

optimal two-column designs for comparing treatments with a control by utilizing 

techniques of Hall (1935) and Agrawal (1966). Hedayat and Majumdar (1988) 

studied designs simultaneously optimal under both block designs and row-

column designs. Jacroux (1989) generalized the Hedayat and Majumdar’s 

(1984) algorithm for finding −A optimal designs. Cheng, et al. (1988) 

introduced new families of −A  and −MV optimal block designs. Stufken 

(1986, 1987, 1988) also studied −A  and −MV optimal block designs. Mandal, 

et al. (2000) considered distance optimality criterion introduced by Sinha (1970) 

for comparing a test treatment with control treatments. The matter of comparing 

test treatments with two or more controls has been discussed in detail by 

Majumdar (1986) and Hedayat, et al. (1988) and Majumdar (1996). Jacroux 

(2000, 2001, 2002) also constructed −A optimal designs for comparing a set of 

test treatments to a set of standard (control) treatments. 

Suppose in an experiment we are interested in comparing several test treatments 

v,,2,1 L  with a control treatment denoted by '0' . For example we have a 

balance incomplete block design with 3=v  treatments in 3=b  blocks each of 

size 4=k , where vk > . 

132

321

000

000

 

The test treatments )3,2,1(  are replicated 21 =r  times and are compared with a  

control treatment '0' , which is replicated 60 =r  times. Each treatment pair 

excluding the control treatment ‘0’ appears together within blocks 11 =λ  time 

and the control treatment '0'  appears with each test treatment within blocks 

40 =λ  times. 
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Only Ting and Notz (1988) considered −A optimal designs for such situations 

and gave a catalogue for comparing v  )( vk >  test treatments with one control 

treatment. They considered designs for the following values of the parameters 

502 ≤≤ b , 50≤≤ kv  and 202 ≤≤ v . 

v  k  

2 4, 7, 10, 13, 14, 17, 20, 21, 22, 24, 26, 27, 28, 29. 

3 5, 9, 10, 14, 16, 17, 19, 22, 24, 25, 27, 28, 30. 

4 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30. 

5 7, 9, 10, 14, 15, 16, 19, 22, 23, 26, 29. 

6 7, 10, 11, 14, 17, 20, 21, 24, 25, 27, 28. 

7 8, 10, 11, 15, 18, 19, 21, 22, 25, 26, 29. 

8 11, 19, 20, 22, 23. 

9 12, 24. 

10 13, 16, 25, 26, 29. 

11 14, 29. 

12 14, 17. 

13 17, 18. 

14 18 

15 19 

16 20 

17 21 

18 22 

19 22, 23. 
 

In this paper, we have developed the above type of designs but restricted our 

consideration to only two values of k , i.e. 1+= vk  and 2+v , for 10≤v . We 

used the method of cyclic shifts for the construction of such designs. 

The paper is organized as follows. The BTIB  designs are briefly described in 

section 2. The cyclic shift method is elaborated in section 3. The methods for the 

construction of BTIB  designs are elaborated in section 4 and the newly 

proposed BTIB  designs for block size vk >  have been developed in section 5. 

The last section concludes this paper with some final remarks. 
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2. THE BALANCE TEST-TREATMENTS INCOMPLETE BLOCK 

)(BTIB  DESIGNS 

Suppose v  test treatments and a control is to be compared in b  blocks of size k  

each. The test treatments will be labeled as v,,2,1 L  and the control as '0' . 

Then the model for the response ijqY  by applying −i th treatment to the −q th 

unit in −j th block is 

  ijqjiijqY εβτµ +++= , vi ,,1,0 L= ,  bj ,,2,1 L=  

        ijnq ,,2,1 L=  ),2,1,0( L=ijn , 

where ijn denotes the number of experimental units in block j  assigned to 

treatment i . There is no observation ijqY  if 0=ijn . The unknown constants µ , 

iτ  and jβ  represent the general mean, the effect of treatment i , the effect of 

block j  and ijqε  is a random variable having mean zero and variance 2σ . 

Let ),,( kbvD  be the set of all possible designs and let )ˆˆ( 0 iττ − ; vi ,,1,0 L=  

be the best linear unbiased estimator of )( 0 iττ − . Our objective here is to 

allocate the treatments v,,2,1,0 L  to the blocks in a way that allows the best 

possible inference on the vector of control-test treatment contrasts 

),,,( 02010 vττττττ −−− L  using the criteria of −A optimality. A design is 

called −A optimal if it minimizes 

 ∑
=

−
v

i
i

1
0 )ˆˆ(var ττ . 

Bechhofer and Tamhane (1981) defined a class of designs, known as BTIB  

designs and discussed some optimal properties of these designs for setting 

simultaneous confidence bounds for the set of control-test treatment contrasts. A 

BTIB  designs is an incomplete block design in which each test treatment 

appears in the same block with the control the same number of times )( 0λ=  and 

any pair of test treatment appears together in the same block the same number of 

times )( 1λ= . Formally, we may define a BTIB  design by the relation 

 ∑
=

=
b

j
ijoj nn

1
0λ  for vi ,,2,1 L=  

and 

 ∑
=

=
b

j
jiij nn

1
1* λ  for *ii ≠ , vi ,,2,1 L= . 
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Note that a BIBD  is a BTIB  design with 1,0=ijn  and 10 λλ = . 

Cheng, et al. (1988), Hedayat and Majumdar (1984), and Hedayat, et al. (1988) 

defined two kinds of BTIB  designs, rectangular )( −R  type and step )( −S  type. 

A BTIB  ),,,,( stkbv  is called  −R type design when 0=s , and −S type design 

when 0>s , where s  is the number of replicates of the control treatment in 

addition to the obligatory bt  replicates of the control treatment. Here each block 

has t  replicates of the control. The layouts of these BTIB  designs are pictured 

in Figure 1 and Figure 2, with columns as blocks.       

 

 

     

 Figure 1.  −R type BTIB  design  Figure 2.  −S type BTIB  design  

 

In −R type BTIB , the remaining part of the design, 0d , is a binary design in b  

blocks of size )( tk −  in the test treatments and is a BIBD . In −S type design 

the parts 1d  and 2d  are the components of the design, which involves the test 

treatments only. The s  blocks in 1d  are having )1( −− tk  units each while the 

)( sb −  blocks in 2d  are having )( tk −  units each. 

3. METHOD OF CYCLIC SHIFTS 

The method of cyclic shifts is a particular way of constructing test treatments 

versus control block designs. Here the v treatments are labeled as 1,,1,0 −vL  

and we consider the equireplicate binary design for v  treatments in vb =  blocks 

of size k . The method of construction is to allocate to the first plot in the −i th 

block the treatment i ; 1,,1,0 −= vi L .We denote this using the vector 

]1,,1,0[1
′−= vu L , which holds the treatments allocated to the first plot in each 

of the blocks v,,2,1 L  respectively. To obtain the treatment allocation of the 

remaining plots in each block, we cyclically shift the treatments allocated to the 
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first plot. In order to define a cyclic shift, let iu  denote the v×1  vector, which 

defines the allocation of treatments to the −i th plot in each block. That is, the 

−j th element of iu  is the treatment allocated to plot i  of block j . A cyclic 

shift of size iq , when applied to plot i , is such that ]1[1
′+=+ iii quu , where 

addition is mod v , 1  is a v×1  vector of ones, 11 −≤≤ ki  and 11 −≤≤ vqi . 

Assuming that we always start with 1u  as defined above, a design is completely 

defined by a set of 1−k  shifts, Q , say, where ],,,[ 121 ′= −kqqqQ L .To avoid a 

treatment occurring more than once in a block, one must ensure that sum of any 

two successive shifts, the sum of any three successive shifts, ,L  the sum of any 

1−k  successive shifts is not equal to zero mod v .  Subject to this constraint, Q  

may consist of any combination of shifts including repeats. Also the shifts need 

only range from 1  to ]2/[v  inclusive, where ]2/[v  is the greatest integer less 

than or equal to ]2/[v  . This is because a shift of size q  is equivalent to one of 

size ][ qv −  mod v . 

To illustrate the above method of construction, let us consider the construction 

of a design for 6=v  and 4=k . The set of shifts are defined by 

],,[ 321 ′= qqqQ , where 5,4,3,2,1=iq ; 3,2,1=i . Suppose that ]5,2,1[=Q , 

then ]5,4,3,2,1,0[1
′=u , ]0,5,4,3,2,1[2

′=u , ]2,1,0,5,4,3[3
′=u  and 

]1,0,5,4,3,2[4
′=u .Then the complete design will be 

105432

210543

054321

543210

 

The properties of a design depend on the number of concurrences between the 

pairs of treatments. A concurrence between two treatments occurs when both 

treatments are in the same block. Because of the cyclic nature of the 

construction, the number of concurrences between any treatment and the 

remainder can be obtained from the number of concurrences between treatment 

0 and the remainder. Also the number of concurrences between 0 and the 

remainder can easily be obtained from Q  (the set of shifts used to construct the 

design). 

If shifts 1q  and 2q , for example, are applied successively to treatment 0 , the 

result is a concurrence between treatment 0  and treatment 1q  and 2q , and a 

concurrence between treatment 0  and treatment 21 qq + . If a third shift, 3q  

say, is applied after 1q  and 2q , then the following treatments will also concur 

with treatment 0 : 3q , 32 qq +  and 321 qqq ++ . This adding of shifts to get 
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the treatments, which concur with 0  works for the general case and so enables 

the number of concurrences of a design to be obtained directly from the shifts, 

which defines it. In general, if shifts 121 ,,, −iqqq L  have been applied 

successively to treatment 0 , then the additional concurrences, which results 

when shift iq  is applied are between treatment 0  and treatments iq , 

iiii qqqqqqqq +++++++ − LLLL 21321 ,,,,  when addition is mod v . It 

can also be noted that any shift of size q  that results in concurrence between 

treatment 0  and treatments q  also results in a concurrence between treatment 0  

and treatment )( qv −  mod v . 

In the above design, 11 =q , 22 =q  and 53 =q  were used. For this one obtains 

321 =+ qq , 1732 ==+ qq (mod 6) and 28321 ==++ qqq (mod 6). In the 

above design treatment 1 appears twice (i.e. 21 =q  and 132 =+ qq ) and since 

1 is symmetric to 5 and 5 appears once (i.e. 53 =q ), therefore the concurrence 

between treatment 0 and treatment 1  is 3  and between treatment 0  and 

treatment 5 is also 3. Similarly treatment 2 appears twice (i.e. 12 =q  and 

2321 =++ qqq ) and since 2 is symmetric to 4, therefore, the concurrence 

between treatment 0 and treatment 2 is 2 and also between treatment 0 and 

treatment 4 is 2. And treatment 3 appears once (i.e. 321 =+ qq ). Since 

treatment 3 is symmetric to itself, therefore the concurrence between treatment 0 

and treatment 3 is 2. Therefore the concurrences between treatment 0 and 

treatments 1, 2, 3, 4, 5 are 3, 2, 2, 2, and 3 respectively. The concurrences 

between treatment 1 and treatments 2, 3, 4, 5 follow the same pattern, i.e. the 

concurrences are 3, 2, 2, 2. Similarly the concurrences between treatment 2 and 
treatments 3, 4, 5 are 3, 2, 2 and so on. 

By using certain combinations of shifts we can construct designs that are made 

up of complete replicates of smaller designs. When v  and k  are not relatively 

prime, then partial sets of dv /  blocks can also be obtained, where ''d  is any 

common divisor of v  and k . The shifts producing such partial sets of blocks 

can be obtained as follows. The smallest integer ''a  is found where 

nkva =× /1)(  and ''n  is an integer. Then the set of shifts used to construct the 

design is such that the sum of every ''a  successive shifts is equal to n . The 

design will contain nv /  blocks. Designs which are constructed using such shifts 

are referred to as fractional designs. 

For even v  and k , the fractional designs can be constructed by setting the 

middle shift )( 2/kq equal to 2/v  and ensuring that shifts 1q  and ikq − ; 

)12/(,,2,1 −= ki L  are complement of each other. For example, a fractional 

design for 6=v  and 4=k  by using the set of cyclic shifts 2/1]4,3,2[  is given 

by 
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543
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In order to construct a design with more than v  blocks, we combine the blocks 

obtained from more than one sets of shifts. As an illustration, given below is a 

design for 6=v  treatments in 15 blocks of size 4 which has been constructed by 

combining together the blocks which are obtained from the three sets of shifts 

[1,1,2], [1,1,3] and 2/1]4,3,2[ . 

321054

105432

054321

543210

      

432105

105432

054321

543210

     

543

105

432

210

 

The above design has been constructed by using shifts ]3,1,1[]2,1,1[ +  

2/1]4,3,2[+ , where the ""+  signs indicate that the blocks constructed from the 

separate sets of shifts must be combined together. 

4. CONSTRUCTION OF TEST-CONTROL TREATMENT BLOCK 

DESIGNS 

Method 1:  If 1D  is a BTIB  design that contains the control t  times in each 

block ),2,1( L=t , then the design 2D  in the test treatments obtained by 

deleting the control from each block of 1D  satisfies the definition of a BIBD . 

Thus one easy way of constructing a BTIB  design is to start with a BIB  design 

2D  in the test treatments and to augment each block of 2D  with the control t  

times for some value of L,2,1=t . BTIB  designs that are constructed using this 

augmentation process are called augmented BIB  designs )'( sABIBD  as defined 

by Majumdar and Notz (1983). 

In our method of construction, we first construct a design in which each 

treatment pair appears together within blocks an equal number of times. The 

block sizes may or may not be equal. If the block sizes are equal, we have an 

−R type design, and then each block of the design can be augmented by t  

replicates of the control treatments, where 1≥t . If the block sizes are not equal, 

then the design is an −S type. In this case, each block is augmented by a 

possibly different value of 0≥t , so that the blocks of the design also become 

equal. As we have our own catalogues of sBIBD  and methods of constructing 

such designs, we therefore have a large number of designs for different values of 

v , k  and b  to choose from. Therefore, we can construct designs for many 

different values of 0r  and 1r . 
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Method 2:  Bechhofer and Tamhane (1981) defined another method of design 

construction, which is as follows. Starting with a BIBD  containing vt >  

treatments in b  blocks, one can replace the treatments tvv ,,2,1 L++  by 

control '0'  to obtain a new BTIB  design with possibly an additional block or 

blocks, each one of the latter containing only one test treatment or only the 

control treatment. After deleting all of these one-treatment blocks and 

identifying the support of the resulting BTIB  design, we obtain the derived 

generator design (s). A generator design is defined by Bechhofer and Tamhane 

(1981) as BTIB  design, which is such that no proper subset of its blocks forms a 

BTIB  design, and no block of which contains only one of the )1( +v  

treatments. Bechhofer and Tamhane (1981) pointed out for the design (3.7a) in 

their method II; that every BIBD  involving t  treatments yields a BTIB  design 

with 1−= tv  test treatments. 

In our second method of construction, we construct a design for )1( +v  test 

treatments. If the design is a BIB , then each treatment appears together an equal 

number of times, and if we consider the ‘zero’ treatment as the control, then we 

have a BTIB  design for v  test treatments and one control. In this case 101 rr = , 

(where 01r  is number of replicates of the control treatment before 

augmentation). Here we can also augment each block by a control treatment t  

times. Then we have btrr += 010 . In this case we can also take designs with 

different values of k , and then augment the blocks with a control treatment to 

make all the blocks of equal size. 

We can also obtain a BTIB  design by combining Method 1 and Method 2. 

Example 1:     Let 3=v , 4=k , 12=b , 1=t , 9=s , 210 =r , 91 =r  and the 

sets of shifts [11] C +[1(3)] C2 , where [11] means the set of shifts [1,1], [1(3)] 

means shift [1] is applied three times in the same row, C  means augment each 

block of this part of the design with a control treatment once and C2  means 

augment each block of this part of design with the control treatment two times, 

i.e. each block of this part of the design contains two replicates of the control 

treatment. The design is given below: 

Design 1 

213

132

321

000

     

132132132

321321321

000000000

000000000

 

Example 2:    Let  3=v , 5=k , 15=b , 0=t , 36=s , 360 =r , 131 =r  and sets 

of shifts are [1111] + [1(4)] C3 . 
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Design 2 

132

321

213

132

321

     

132132132132

321321321321

000000000000

000000000000

000000000000

 

Example 3:    Let 3=v , 5=k , 15=b , 1=t , 33=s , 480 =r , 91 =r  and sets 

of shifts [1]3 C +{[1(2)+2] )1( +t }3 C . In this case we have constructed the 

design by using the sets of shifts ]1[ , and ]2)2(1[ +  for 1+v , i.e. for 3,2,1,0  

treatments (denoted in the sets of shifts by adding 1+t  at the end) and then 

augmented the full design by the control treatment thrice. The final design is 

given below: 

Design 3 

432

321

000

000

000

     

043243214321

321032103210

000000000000

000000000000

000000000000

 

5. NEW BTIB  DESIGNS WHEN vk >  

Ting and Notz (1988) only considered −A optimal BTIB  designs for vk >  

situation and also provided a catalogue for comparing v test treatments with one 

control. They considered designs for the following values of the parameters 

502 ≤≤ b , 50≤≤ kv  and 202 ≤≤ v . So, the designs obtained by our methods 

described in the preceding section are listed in Table 1, which follows. 

In Table 1, we have only given one representative case for 4=v  and 5=k . It 

can be seen from Table 1 that we have found many new designs, which were not 

obtained earlier. For example Ting and Notz (1988) gave the designs for 4=v , 

5=k  and L,12,6=b , whereas we have developed designs for 4=v , 5=k  

and 20,,5,4 L=b . They gave only one design for the above values of v , b  

and k  for 100 =r  and 51 =r , whereas in addition to this design we have 

proposed design for 180 =r  and 31 =r , and 20 =r  and 71 =r . Our designs 

have been developed using newly proposed method based on cyclic shifts. We 

have given sets of shifts that must be used to construct such designs for 4=v  

and 5=k  in Table 1. The new designs can be considered for the following sets 

of v , k  and different values of b , 0r  and 1r . 
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Table 1: Suggested designs for one representative case 4=v  and 5=k . 

b  t  s  0r  1r  Sets of Shifts 

4 2 0 8 3 C2]11[  

5 1 4 9 4 CC 2]11[)]4/1(11[ +  

 0 1 1 6 C)]4/1(111[]1111[ +  

6 3 0 18 3 C3)]2/1(21[ +  

 1 4 10 5 CC 2]11[)]4/2(111[ +  

 0 2 2 7 C)]4/2(111[]1111[ +  

7 1 12 19 4 CC 3)]2/1(21[)]4/1(111[ ++  

 1 4 11 6 CC 2]11[)]4/3(111[ +  

 0 3 3 8 C)]4/3(111[]1111[ +  

8 2 0 16 6 C2)]2(11[  

 0 4 4 9 C]111[]1111[ +  

 1 12 20 5 CC 3)]2/1(21[)]4/2(111[ ++  

 1 4 12 7 CC 2]11[]111[ +  

9 1 4 13 8 CC 2]11[)]4/5(111[ +  

 1 12 21 6 CC 3)]2/1(21[)]4/3(111[ ++  

 1 8 17 7 CC 2)]2(11[)]4/1(111[ +  

 0 5 5 10 C)]4/5(111[]1111[ +  

 0 1 1 11 C)]4/1(111[)]2(1111[ +  

10 1 4 14 9 CC 2]11[)]4/6(111[ +  

 1 12 22 7 CC 3)]2/1(21[]111[ ++  

 1 8 18 8 CC 2)]2(11[)]4/2(111[ +  

 0 6 6 11 C)]4/6(111[]1111[ +  

 0 2 2 12 C)]4/2(111[)]2(1111[ +  
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 2 6 26 6 CC 3)]2/1(21[2]11[ ++  

 3 4 34 4 Ct 3)}1(]21{[ ++  

 2 10 30 5 CtCt 3)}1(]2{[2)}1(]11{[ +++  

11 1 4 15 10 CC 2]11[)]4/7(111[ +  

 1 12 23 8 CC 3)]2/1(21[)]4/5(111[ ++  

 1 8 19 9 CC 2)]2(11[)]4/3(111[ +  

 0 7 7 12 C)]4/7(111[]1111[ +  

 0 3 3 13 C)]4/3(111[)]2(1111[ +  

 1 16 27 7 CCC 3)]2/1(21[2]11[)]4/1(111[ +++  

 1 24 35 5 CtC 3)}1(]21{[)]4/1(111[ +++  

 1 20 31 6 CtCtC 3)}1(]2{[2)}1(]11{[)]4/1(111[ ++++  

12 1 4 16 11 CC 2]11[)]2(111[ +  

 1 12 24 9 CC 3)]2/1(21[)]4/6(111[ ++  

 1 8 20 10 CC 2)]2(11[]111[ +  

 0 8 8 13 C)]2(111[]1111[ +  

 0 4 4 14 C]111[)]2(1111[ +  

 1 16 28 8 CCC 3)]2/1(21[2]11[)]4/2(111[ +++  

 3 0 36 6 C3]2)2(1[ +  

 1 20 32 7 CtCtC 3)}1(]2{[2)}1(]11{[)]4/2(111[ ++++  

13 1 4 17 12 CC 2]11[)]4/9(111[ +  

 1 12 25 10 CC 3)]2/1(21[)]4/7(111[ ++  

 1 8 21 11 CC 2)]2(11[)]4/5(111[ +  

 0 9 9 14 C)]4/9(111[]1111[ +  

 0 5 5 15 C)]4/5(111[)]2(1111[ +  

 0 1 1 16 C)]4/1(111[)]3(1111[ +  
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 1 16 29 9 CCC 3)]2/1(21[2)]2(11[)]4/3(111[ +++  

 1 24 37 7 CC 3]2)2(1[)]4/1(111[ ++  

 1 20 33 8 CtCtC 3)}1(]2{[2)}1(]11{[)]4/3(111[ ++++  

14 1 4 18 13 CC 2]11[)]4/10(111[ +  

 1 12 26 11 CC 3)]2/1(21[)]2(111[ ++  

 1 8 22 12 CC 2]2(11[)]4/6(111[ +  

 0 10 10 15 C)]4/10(111[]1111[ +  

 0 6 6 16 C)]4/6(111[)]2(1111[ +  

 0 2 2 17 C)]4/2(111[)]3(1111[ +  

 1 16 30 10 CCC 3)]2/1(21[2]11[]111[ +++  

 1 24 38 8 CC 3]2)2(1[)]4/2(111[ ++  

 2 6 34 9 CC 3)]2/1(21[2)]2(11[ ++  

 2 14 42 7 CtC 3)}1(]21{[2]111[ +++  

15 1 4 19 14 CC 2]11[)]4/11(111[ +  

 1 12 27 12 CC 3)]2/1(21[)]4/9(111[ ++  

 1 8 23 13 CC 2]2(11[)]4/7(111[ +  

 0 11 11 16 C)]4/11(111[]1111[ +  

 0 7 7 17 C)]4/7(111[)]2(1111[ +  

 0 3 3 18 C)]4/3(111[)]3(1111[ +  

 1 16 31 11 CCC 3)]2/1(21[2]11[)]4/5(111[ +++  

 1 24 39 9 CC 3]2)2(1[)]4/3(111[ ++  

 1 20 35 10 CCC 3)]2/1(21[2)]2(11[)]4/1(111[ +++  

 1 28 43 8 CCtC )]4/1(111[3)}1(]21{[2]111[ ++++  

16 1 4 20 15 CC 2]11[)]3(111[ +  

 1 12 28 13 CC 3)]2/1(21[)]4/10(111[ ++  
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 1 8 24 14 CC 2)]2(11[)]2(111[ +  

 0 12 12 17 C)]3(111[]1111[ +  

 0 8 8 18 C)]2(111[)]2(1111[ +  

 0 4 4 19 C]111[)]3(1111[ +  

 1 16 32 12 CCC 3)]2/1(21[2]11[)]4/6(111[ +++  

 1 24 40 10 CC 3]2)2(1[]111[ ++  

 1 20 36 11 CCC 3)]2/1(21[2)]2(11[)]4/2(111[ +++  

 2 12 44 9 CC 3]2)2(1[2]11[ ++  

 2 16 48 8 CtC 3)}1(]21{[3)]2/1(21[ ++++  

 3 4 52 7 CtCtC 3)}1(]2{[2)}1(]11{[3)]2/1(21[ +++++  

17 1 4 21 16 CC 2]11[)]4/13(111[ +  

 1 12 29 14 CC 3)]2/1(21[)]4/11(111[ ++  

 1 8 25 15 CC 2)]2(11[)]4/9(111[ +  

 0 13 13 18 C)]4/13(111[]1111[ +  

 0 9 9 19 C)]4/9(111[)]2(1111[ +  

 0 5 5 20 C)]4/5(111[)]3(1111[ +  

 0 1 1 21 C)]4/1(111[)]4(1111[ +  

 1 16 33 13 CCC 3)]2/1(21[2]11[)]4/7(111[ +++  

 1 24 41 11 CC 3]2)2(1[)]4/5(111[ ++  

 1 20 37 12 CCC 3)]2/1(21[2)]2(11[)]4/3(111[ +++  

 1 28 45 10 CCC 3]2)2(1[2]11[)]4/1(111[ +++  

 1 32 49 9 CCtC )]4/1(111[3)}1(]21{[3)]2/1(21[ +++++  

 1 36 53 8 CCtCtC )]4/1(111[3)}1(]2{[2)}1(]11{[3)]2/1(21[ ++++++  

18 1 4 22 17 CC 2]11[)]4/14(111[ +  

 1 12 30 15 CC 3)]2/1(21[)]4/12(111[ ++  
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 1 8 26 16 CC 2)]2(11[)]4/10(111[ +  

 0 14 14 19 C)]4/14(111[]1111[ +  

 0 10 10 20 C)]4/10(111[)]2(1111[ +  

 0 6 6 21 C)]4/6(111[)]3(1111[ +  

 0 2 2 22 C)]4/2(111[)]4(1111[ +  

 1 16 34 14 CCC 3)]2/1(21[2]11[)]2(111[ +++  

 1 24 42 12 CC 3]2)2(1[)]4/6(111[ ++  

 1 20 38 13 CCC 3)]2/1(21[2)]2(11[]111[ +++  

 1 28 46 11 CCC 3]2)2(1[2]11[)]4/2(111[ +++  

 1 32 50 10 CCtC )]4/2(111[3)}1(]21{[3)]2/1(21[ +++++  

 3 0 54 9 C3)]2/3(3)3(1[ +  

19 1 4 23 18 CC 2]11[)]4/15(111[ +  

 1 12 31 16 CC 3)]2/1(21[)]4/13(111[ ++  

 1 8 27 17 CC 2)]2(11[)]4/11(111[ +  

 0 15 15 20 C)]4/15(111[]1111[ +  

 0 11 11 21 C)]4/11(111[)]2(1111[ +  

 0 7 7 22 C)]4/7(111[)]3(1111[ +  

 0 3 3 23 C)]4/3(111[)]4(1111[ +  

 1 16 35 15 CCC 3)]2/1(21[2]11[)]4/9(111[ +++  

 1 24 43 13 CC 3]2)2(1[)]4/7(111[ ++  

 1 20 39 14 CCC 3)]2/1(21[2)]2(11[)]4/5(111[ +++  

 1 28 47 12 CCC 3]2)2(1[2]11[)]4/3(111[ +++  

 1 32 51 11 CCtC )]4/3(111[3)}1(]21{[3)]2/1(21[ +++++  

 1 36 55 10 CC 3)]2/3(2)3(1[)]4/1(111[ ++  

20 1 4 24 19 CC 2]11[)]4(111[ +  



Ijaz Iqbal and M.H. Tahir  70

 1 12 32 17 CC 3)]2/1(21[)]4/14(111[ ++  

 1 8 28 18 CC 2)]2(11[)]3(1111[ +  

 0 16 16 21 C)]4(111[]1111[ +  

 0 12 12 22 C)]3(111[)]2(1111[ +  

 0 8 8 23 C)]2(111[)]3(1111[ +  

 0 4 4 24 C]111[)]4(1111[ +  

 1 16 36 16 CCC 3)]2/1(21[2]11[)]4/10(111[ +++  

 1 24 44 14 CC 3]2)2(1[)]2(111[ ++  

 1 20 40 15 CCC 3)]2/1(21[2)]2(11[)]4/6(111[ +++  

 1 28 48 13 CCC 3]2)2(1[2]11[]111[ +++  

 1 32 51 12 CCtC ]111[3)}1(]21{[3)]2/1(21[ +++++  

 1 36 56 11 CC 3)]2/3(2)3(1[)]4/2(111[ ++  

 3 8 68 8 Ct 3)}1()]2(2)2(1{[ ++  

 2 24 64 9 CtCt 3)}1()]2(21{[2)}1(]11{[ ++++  

 2 20 60 10 CtCt 3)}1(]21{[2)}1(]1211{[ +++++  

 

6. SOME REMARKS 

In this paper, we have proposed new methods for the construction of block 

designs for comparing test treatments with a control when block size vk >  by 

using the method of cyclic shifts. These new designs also provide a flexible 

family of BTIB  designs. An important feature of these designs is that, for many 

cases the −A optimal design may also be present in this class. We may use a 

different rotation to construct the tables of these designs. In cases where the 

BIB  design does not exist, we can fill the gap by using Regular Graph designs 

(See Iqbal and Jones, 1999) but here we have given only BTIB  designs. 
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