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ABSTRACT 

A bivariate model is developed and characterized to study the inter-relationship 

between breastfeeding and post partum amenorrhea. 

 

1. INTRODUCTION 

The term post partum amenorrhea denotes the period of temporary sterility 

which immediately follows the termination of pregnancy and during which 

conception does not take place. The mean duration of post partum amenorrhea is 

a good indicator of the mean duration of ovulation. It is very difficult to 

ascertain the time after birth when the couple should begin to practice 

contraception. Generally, the resumption of the first menstruation is treated as 

the termination of PPA . The period of amenorrhea after birth is often called as 

lactational amenorrhea due to the fact that it is commonly known that majority 

of the women breastfeed their infants and breastfeeding is one of the principal 

determinants of the amenorrhea. Therefore, an assessment of the probable 

effects of breastfeeding on the period of amenorrhea becomes desirable. 

Amenorrhea is affected not only by the duration of breastfeeding but also by the 

type and intensity of breastfeeding. [Huffman et al. (1987). Malkani and 

Mirchandani (1960). Srinivasan et al. (1989)]. It is easy to ascertain the 

lactational amenorrhea period than the breastfeeding because the problems of 

related to the type and intensity of breastfeeding. Several authors make attempt 

to develop models on PPA  in the past. Talwar (1965) used the asymmetrical 

triangular distribution for the post partum amenorrhea deriving the distribution 

of closed birth intervals. 

Then discrete triangular distribution is used for deriving the probability 

distribution of PPA , Yadav (1966) treated the PPA  duration to be distributed 

as a Chi-square while deriving distribution of the number of births as against 

constant PPA  period. Biswas (1973) used a mixture of Gamma density, )(xf , 

with two parameters, say 1θ  and 2θ  to describe the variations in PPA  duration, 

which is given by 
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Singh and Bhaduri (1971) gave a more general distribution of PPA . They used 

two Type III distributions to derive the pattern of PPA . Using the same concept 

Saxena and Pathak (1977) have used a mixture of two truncated Chi-square 

distribution with the assumption that there is minimum period of one month 

PPA  that every woman has. Their proposed distribution is 

 ),()1(),()( 21 nxfnxfxf ππ −+= , 
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But these mixture models are not found suitable to estimate the effect of 

breastfeeding on the PPA  duration. Lesthaeghe and Page (1980) have discussed 

a more comprehensive system of distribution of PPA . A more general treatment 

of the behaviour of PPA  period in relation to lactation can be found in Ginsberg 

(1973) where PPA  is treated as a double stochastic process. 

In this paper, the problem of estimating the residual Post Partum Amenorrhea 

)(PPA  after the discontinuity of lactation is viewed in the same manner as a 

problem of life-testing when two components are in parallel configuration in the 

system and failure of one results in decline in the survival rate of the second. In 

order to study the inter-relationship between breast feeding and post partum 

amenorrhea, a bivariate model is developed. 

2. RELATION BETWEEN PPA  AND BREASTFEEDING  

The study of the mechanism underlying the variation in the lactation amenorrhea 

acquires much more importance for the evaluation of the post-partum 

conception programmed as well as ascertainment of natural fertility of women. 

In general, breastfeeding delays the onset of menstruation; hence the study of 

impact of breastfeeding on PPA  is quite desirable. The study of such impact can 

be done through the empirical models as well as through the stochastic models. 

A number of studies inferred that the PPA  can be extended up to an extent by 

prolonging the breast-feeding or lactation. The problem of estimating the 

residual PPA  after the discontinuity of lactation is of prime importance. This 

problem can be viewed in the same manner as a problem of life testing when 

two components are in parallel configuration in a system and the failure of one 
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result in decline in the survival rate of the second. For this situation Ferund 

(1961) proposed the point distribution. 

Suppose that an instrument has two components A  and B  with life times X  

and Y  having the exponential distribution (when both components are in 

operation) with parameters α  and β  respectively. The X  and Y  are dependent 

in a manner that a failure of either component changes the parameter of the life 

distribution of the other component. Thus when A  fails, the parameter for Y  

becomes β ′  when B  fails, the parameter for X  becomes α ′ . There is no other 

dependence. Thus the joint density function of X  and Y  is 
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Suchindaran and Bhattacharya (1974) have implemented the above model to 

study PPA  and breastfeeding where X  and Y  denote the length of post-partum 

amenorrhea and breastfeeding respectively. And also 1α  and 1β  are the 

probabilities of PPA  and breastfeeding respectively to end before time t  and 

1α  and 1β  are the changed probabilities in case of one of them earlier than 

another. 

Let ),( ii yx ,  ni ,,2,1 L=  be n  pairs of independent random variables from 

Ferund’s exponential bivariate distribution (which may be consider as a 

particular case of Marshall and Olkin’s weibull bivariate distribution) with the 

distribution function. 
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Then the corresponding probability density function can be obtained as 
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i) For yx <<0  
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ii) For xy <<0  
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Which finally yields 
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3. MARGINAL PROBABILITY DENSITY FUNCTIONS OF POST 

PARTUM AMENORRHEA AND BREASTFEEDING 

Now, let ),( ii YX  ),,2,1( ni L=  be n  pairs of observations for PPA  and 

breastfeeding for a cohort. In the present section the marginal probability density 

functions and distribution functions of PPA )(X  and breastfeeding )(Y  are 

obtained. 

The marginal probability density function of PPA )(X  can be obtained as  
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On simplification one can get 
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and the marginal distribution function of PPA )(X  is 
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Similarly the marginal probability density function of breastfeeding )(Y  will be 
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and the marginal distribution function of breastfeeding )(Y  is 

 ∫=
y

dyyhyH
0

)()(  

     
)(

)(exp})({exp)(
1

211

211121

ββα

βαβαββ

−+

−++−−
−=

yy
, 0>y      (3.4) 

The mean of the random variables X  and Y  having the probability density 

function as defined in (2.3) and (3.3) respectively will be 
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and 

 ∫
∞

=
0

22
)()( dxxgxXE  

   











+

+

−

−+
=

2
2

1

2
11

21

211 )(

)(

)(

1

α

β

βα

αα

αβα
.          (3.6) 

Now 

 ∫
∞

=
0

)()( dyyhyYE  

     







+

+

−

−+
=

2

1

11

21

211 )(

)(

)(

1

β

β

βα

ββ

ββα
           (3.7) 

and 

 ∫
∞

=
0

22
)()( dyyhyYE  

       











+

+

−

−+
=

2
2

1

2
11

21

211 )(

)(

)(

1

β

β

βα

ββ

ββα
          (3.8) 

4. CONDITIONAL PROBABILITY DENSITY FUNCTIONS OF POST-

PARTUM AMENORRHEA AND BREASTFEEDING 

Now, in the present section the conditional probability density functions of Y  

for given X  and of X  for given Y  are obtained. 

The conditional probability density function of X  for given Y  can be obtained 

as follows 
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Similarly, the conditional probability density function of Y  for given X  can be 

obtained as follows: 

 
)(

),(
)|(

xg

yxf
xyh =  



A bivariate model to study the stochastic behaviour of breastfeeding … 33

 














<<
−++−+−

−+−−−+

<<
−++−+−

−+−−−+

=

yx
xx

xy

xy
xx

yx

0,
)(exp})({exp)()(

}])({[exp)(

0,
)(exp})({exp)()(

}])({[exp)(

212111121

211221121

212111121

211221112

αβαβαβααα

ββαβαβαβα

αβαβαβααα

αβαααβαβα

 

                       (4.2) 

5. CONDITIONAL EXPECTATION AND CONDITIONAL VARIANCE 

 OF THE POST-PARTUM AMENORRHEA AND BREASTFEEDING 

In the present section, the conditional expectation and conditional variance of 

X  for given Y  and of Y  for given X  are obtained. The conditional 

expectation of X  for given Y  can be obtained as follows: 
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Now conditional variance of the X  for given Y  can be obtained as 
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The conditional expectation and conditional variance of the Y  for given X  can 

be obtained as 
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Now conditional variance of the Y  for given X  can be obtained as 
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