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ABSTRACT 

The criterion of error of misclassification of Fisher linear classifier has not been 

fully investigated in the context of intra class correlations in classifying two 

Multivariate Normal populations [Johnson and Wichern (2001)]. Here an attempt 

is made to study the performance of Fisher classifier in classifying a new 

observation 0X  into one of the two multivariate normal populations ),( 1 ΣµpN   

and ),( 2 ΣµpN  in the above said context using simulation study. 

 

1. INTRODUCTION 

The purpose of pattern recognition is to determine to which category or class 

(population) a given sample belongs to. Through an observation or measurement 

process, we obtain an observation vector. The observation vector serves as the 

input to a decision rule (statistic) by which we assign the sample to one of the 

given classes. Let us assume that the observation is a random vector whose 

conditional density function depends on its class. If the conditional density 

function for each class is known, then the pattern recognition problem becomes 

a problem in statistical hypothesis testing [Fukunaga (1990)]. From this angle, 

the classification problem can be viewed as a Pattern Recognition problem. 

Here, it is aimed to study the performance of Fisher classifier in the said context. 

As it is proposed to study the performance of Fisher classifier in case of two 

Multivariate Normal populations, the decision rule with usual notations, to test 

 :0H  ),( 110 Σ≅∈ µπ pNX   Vs :1H  ),( 220 Σ≅∈ µπ pNX  

is presented here for ready reference: 

Fisher Rule given by 

Allocate 0X  to 1π  if 

 )()(
2

1
)( 21

1
21

1
21 µµµµµµ +Σ′−≥Σ′− −−

X           (1.1) 

Otherwise allocate 0X  to 2π . 
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When the parameters are unknown, then they are estimated based upon two 

samples of sizes 1n  and 2n  respectively from 1π  and 2π , before the 

classification is done, and the decision rule is obtained by replacing 1µ , 2µ , Σ  

respectively by 1X , 2X and pooledS  in (1.1). 

2. COMPUTATION OF TOTAL PROBABILITY OF 

MISCLASSIFICATION )(TPM  

Computing probability of error of misclassification is laborious as it involves 

evaluation of multiple integrals [Fukunaga (1990)]. However TPM  can be 

estimated by means of the confusion matrix using simulation and the process is 

as under: 

Total Probability of Misclassification )(TPM  is defined as, 

(Pr=TPM misclassifying a 1π  observation or misclassifying a 2π  observation) 

    (Pr= observation comes from 1π  and is misclassified as 2π ) 

  (Pr+ observation comes from 2π  and is misclassified as 1π ). 

    )(Pr)|(Pr)(Pr)|(Pr 221112 ππππππ ∈+∈= XX . 

Therefore the confusion matrix is of the form 

  Predicted 

  1π  2π  

1π  Cn1  CM nnn 111 −=   

Actual 

2π  CM nnn 212 −=  Cn2  
 

=Cn1  Number of 1π  items correctly classified as 1π  items, 

=Cn2  Number of 2π  items correctly classified as 2π  items, 

=Mn1  Number of 1π  items misclassified as 2π  items, 

=Mn2  Number of 2π  items misclassified as 1π  items 

and   
21

21ˆ
nn

nn
MPT MM

+

+
= .                (2.1) 

3. METHODOLOGY 

Let ),( 1 ΣµpN  and ),( 2 ΣµpN  be the two normal populations to be 

discriminated for the specified parameters using above said method. Without 
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loss of generality 1µ  is taken as null vector, 2µ , the competitive vector is taken 

as ′1k , k  varying from 3)5.0(5.0 . 

Therefore to test the hypothesis that 

 :0H  The sample is drawn from ),( 1 ΣµpN  

  Vs 

 :1H  The sample is drawn from ),( 2 ΣµpN  

utilizing the relationship Σ=2/12/1  VV ρ , where V  and ρ  are respectively the 

diagonal matrix of variances and intra class correlations, and setting ρ=Σ . The 

dimensionality )( p  ranging from 10)1(3  and the correlations in the correlation 

matrix ranging from 2.0  to 8.0  spreading with equidistant along the rows are 

taken in ascending fashion. In another case it is taken in the descending order. 

The priori probabilities are 11)( pp =π  and 122 1)( ppp −==π . Here we have 

taken 9.0)1.0(1.01 =p . 

a) Generation of multivariate normal data 

The vectors of multivariate normal data with the specified parameters can be 

obtained starting from univariate standard normal data and the operational 

procedure is as follows: 

Let 1U  and 2U  be uniform random variates between ]1,0[ . According to Box 

and Muller (1958) 

 )2(cos ln2 211 UUZ π−= , )2(sin  ln2 212 UUZ π−=  

will follow )1,0(N . 

Let 111 µ+= ZY  and 222 µ+= ZY  will follow )1,( iN µ , 2,1=i . 

Let Λ  and Φ  be respectively the matrices of eigen values and the 

corresponding eigen vectors of the Σ . 

Let X  be Y
2/1ΛΦ  where )( 21 ′= pYYYY L . It can be seen that X  follows 

bivariate normal with 

)( 21 ′= pµµµµ L  and Σ  as the parameters. Using this methodology we can 

generate multivariate normal data for any specified set of parameters. 

When the parameters are not specified then the simulation study involves two 

phases - Training (estimation) and Validation (classification). In training phase, 

based on samples of size 1n  and 2n  drawn respectively from the specified 

populations, estimation of parameters is done, then the classifier is constructed, 
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while in validation phase, another set of pseudo random vectors are drawn from 

multivariate normal and is used to study the performance of classifiers under 

consideration. 

b) Orthogonal transformation 

Classification using orthogonal transformation is worth attempting for study of 

relative performance.      

In the more general case where I≠Σ , the observation noise is correlated and is 

often called coloured noise. In such a case, one can introduce Whitening 

transformation XAY = , where IAA =Σ′ . 

Then the procedure discussed so far applies to Y  if we replace iµ  by iA µ . 

This transformation is reversible, and the observation Y  can be classified as 

effectively as 0X . Construction of A  is as explained in section 3 a). 

c) Jackknife procedure 

i) Start with the 1n  group of observations. Omit one observation from this 

group and develop a classification rule based on the remaining )1( 1 −n , 2n  

observations. 

ii) Classify the observation using the function constructed in step i). 

iii) Repeat steps i) and ii) until all the 1n  observations are classified. Let 

Mn1  be the number of observations misclassified in this group. 

iv) Repeat steps i) through iii) for the 2π  observations. Let Mn2  be the 

number of observations misclassified in this group. Once Mn1  and 

Mn2  are obtained, TPM  is estimated using (2.1). 

d) Choice of parameters for the construction of tables 

If 1π  and 2π  denote populations with ),( 1 ΣµpN  and ),( 2 ΣµpN  respectively, 

then 

 11 )000( ×′= pLµ  

 12 )111( ×′= pk Lµ  

  3)5.0(5.0=k  and Σ  the variance-covariance matrix is given by 

 ppij ×Σ=Σ )(  with 1=Σij , if ji = . 

and 

 ijΣ , if ji ≠ . 



Performance of Fisher discriminant function in classification … 5 

Case I: 

 8.012 =Σ  

 )]2/(6.0[111 −−Σ=Σ + pjj  for pj ,,2 L= . 

 




=

><Σ
=Σ

ji

jjij
ij

if1

1forif1
 

Case II: 

 2.012 =Σ  

 )]2/(6.0[111 −+Σ=Σ + pjj  for pj ,,2 L= . 

 




=

><Σ
=Σ

ji

jjij
ij

if1

1forif1
. 

4. SALIENT OBSERVATIONS ON THE SIMULATION RESULTS 

The tolerance limit for TPM  is taken as %10  in the present study. The exercise 

involved construction of 14 tables [two for known cases (one in decreasing and 

the other is in increasing order of correlations) and 12 for unknown cases of 

which each of six possible sample cases )10,10( , )15,10( , )20,10( , )15,15( , 

)20,15( , )20,20(  for decreasing and increasing order of correlations]. The 

conclusions are drawn consolidating all 14 tables are as follows. Of which only 

4 tables bearing numbers 4.1 to 4.4 Tables (4.1 and 4.2 pertaining to known 

cases; 4.3 and 4.4 are for )20,10(  in increasing and decreasing order of 

correlations respectively) are as appended in the annexure to save space and the 
remaining tables are available with the authors. 

a) When parameters are specified 

i) Fisher classifier performs better under orthogonal transformation for the 

decreasing pattern of correlations in Σ  matrix. 

ii) When the tolerance condition is relaxed Fisher classifier performs better 

under given vector (a new vector to be classified) for the increasing pattern 

of correlations in Σ  matrix. 

b) When parameters are not specified 

i) Fisher classifier under given vector is performing better when compared to 
Orthogonal transformation and Jackknifing. 

ii) Under Jackknifing TPM  is within tolerance limit with the gradual increase 

in sample sizes. 
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ANNEXURE 

Percentage TPM  values of Fisher classifier in classifying two populations 

),0(:1 ΣpNπ  and ),(: 22 Σµπ pN  

Table 4.1: Decreasing order of correlations in Σ  matrix when the parameters 

are specified 

2µ  ′1)0.3(  ′1)5.2(  ′1)0.2(  ′1)5.1(  ′1)0.1(  ′1)5.0(  

P  � � � � � � � � � � � � 

3 2.0 6.0 5.0 1.6 8.8 4.0 15.3 9.2 23.9 15.3 9.2 23.9 

4 3.3 0.3 6.2 1.2 11.6 1.9 19.2 7.9 30.1 19.2 7.9 30.1 

5 3.2 0.1 7.8 0.5 10.6 1.2 17.7 4.8 27.5 17.7 4.8 27.5 

6 2.0 2.0 2.7 1.0 8.2 1.6 14.9 5.5 26.5 14.9 5.5 26.5 

7 3.8 0.0 5.2 0.1 11.1 1.4 15.0 4.3 24.4 15.0 4.3 24.4 

8 2.7 0.0 5.3 0.0 10.9 0.5 12.9 4.0 25.9 12.9 4.0 25.9 

9 2.0 0.0 4.2 0.0 8.0 0.5 14.8 2.3 25.1 14.8 2.3 25.1 

10 4.1 0.0 6.2 0.0 10.1 0.6 16.4 2.4 25.3 16.4 2.4 25.3 
 

� For a given vector 

� Using orthogonal transformation. 

Table 4.2: Increasing order of correlations in Σ  matrix when the parameters 

are specified 

2µ  ′1)0.3(  ′1)5.2(  ′1)0.2(  ′1)5.1(  ′1)0.1(  ′1)5.0(  

P  � � � � � � � � � � � � 

3 24.2 77.9 26.0 73.9 26.6 75.0 31.6 74.7 35.5 31.6 74.7 35.5 

4 20.1 71.2 23.2 69.9 26.3 73.5 30.9 72.5 36.1 30.9 72.5 36.1 

5 17.0 61.8 19.4 64.6 28.2 67.3 30.3 68.5 37.4 30.3 68.5 37.4 

6 16.4 59.7 21.1 60.6 27.3 62.0 31.0 61.1 36.2 31.0 61.1 36.2 

7 18.2 54.4 21.7 56.3 26.7 57.3 32.0 57.4 38.1 32.0 57.4 38.1 

8 18.1 50.2 20.9 51.7 25.7 52.7 30.6 53.4 40.0 30.6 53.4 40.0 

9 18.3 44.6 21.9 43.5 28.5 42.2 30.1 44.9 37.4 30.1 44.9 37.4 

10 16.4 33.1 21.6 34.0 25.2 33.4 31.0 36.8 36.3 31.0 36.8 36.3 
 

� For a given vector 

� Using orthogonal transformation. 
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Table 4.3: Decreasing order of correlations in Σ  matrix when the parameters 

are not specified 

Size of first sample: 10  Size of second sample: 20 

2µ  ′1)0.3(  ′1)5.2(  ′1)0.2(  

P  � � � � � � � � � 

3 0.7 18.0 7.7 2.5 28.0 9.2 3.0 25.5 13.5 

4 0.2 33.5 5.5 0.5 35.5 10.0 3.5 36.5 12.2 

5 0.0 37.7 4.7 0.0 37.5 7.0 1.7 33.2 9.7 

6 0.0 40.5 3.2 0.2 36.2 8.0 0.7 36.2 7.7 

7 0.0 45.5 4.5 0.0 41.7 6.7 0.5 42.2 8.2 

8 0.0 47.2 3.0 0.0 43.7 3.0 0.0 42.2 7.0 

9 0.0 46.0 2.5 0.0 46.7 5.0 0.0 42.5 8.0 

10 0.0 47.5 3.2 0.0 47.7 4.0 0.0 45.5 6.5 

2µ  ′1)5.1(  ′1)0.1(  ′1)5.0(  

P  � � � � � � � � � 

3 10.2 34.5 17.0 21.2 37.5 22.7 34.0 44.0 34.5 

4 6.5 34.7 13.7 8.7 13.7 9.2 32.0 44.7 31.0 

5 4.2 39.7 12.5 11.7 39.5 17.5 22.5 42.0 26.0 

6 4.0 36.7 10.0 12.0 39.0 16.2 22.5 44.0 25.7 

7 2.0 41.0 12.2 8.7 41.5 15.2 20.7 46.0 25.5 

8 1.5 38.2 10.0 6.2 42.5 16.2 22.0 43.0 25.5 

9 1.0 44.0 9.7 7.5 45.7 14.0 25.7 43.5 28.7 

10 2.2 44.5 7.7 5.0 41.5 14.2 22.0 47.7 25.5 
 

� For a given vector 

� Using orthogonal transformation 

� Jackknife method. 
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Table 4.4: Increasing order of correlations in Σ  matrix when the parameters 

are not specified 

Size of first sample: 10  Size of second sample: 20 

2µ  ′1)0.3(  ′1)5.2(  ′1)0.2(  

P  � � � � � � � � � 

3 0.0 19.7 4.5 0.7 22.0 9.5 3.7 25.5 13.7 

4 0.5 15.7 6.5 0.7 15.5 8.5 1.5 18.0 13.2 

5 0.0 7.5 5.5 0.0 5.5 7.7 1.7 9.5 9.2 

6 0.0 0.5 3.7 0.2 2.5 4.7 1.7 6.0 8.2 

7 0.0 0.2 3.2 0.5 2.2 6.2 0.2 4.5 9.7 

8 0.0 6.5 3.5 0.0 7.0 4.2 0.5 9.5 6.5 

9 0.0 12.0 1.7 0.0 13.5 4.5 0.2 17.5 6.0 

10 0.0 34.5 2.5 0.5 33.7 3.0 0.2 28.5 6.0 

2µ  ′1)5.1(  ′1)0.1(  ′1)5.0(  

P  � � � � � � � � � 

3 5.5 23.2 13.7 28.2 27.2 21.0 32.7 36.7 31.7 

4 6.5 23.0 16.7 13.7 24.2 19.0 27.5 33.5 30.0 

5 5.0 16.0 13.5 14.2 22.0 20.2 29.7 32.2 32.7 

6 3.2 11.5 10.0 10.2 20.7 19.0 27.7 29.0 30.0 

7 2.0 6.5 10.2 13.5 25.0 21.2 24.5 31.0 24.2 

8 2.5 11.2 10.2 8.5 26.0 16.7 24.5 33.2 25.2 

9 0.5 26.0 8.2 7.7 27.5 17.5 24.2 40.7 26.5 

10 1.7 28.5 10.2 6.2 34.5 13.5 24.5 44.0 26.0 
 

� For a given vector 

� Using orthogonal transformation 

� Jackknife method. 
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