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ABSTRACT 

The classical EOQ model requires all the parameters to be constant. Subsequent 

development have considered models in which just one or more of the cost or 

demand parameters change at a point of time and, the number of units received 

does not necessarily match with the number of units ordered but has a known 

mean and variance. In practice, price rises are often announced, in advance, and 

such changes may affect the demand rate. We determine the optimal ordering 

policy for such systems and present a simple algorithm for computing it. This is 

supported by a numerical example, which shows some of the interdependencies of 

the various parameters. 

 

1. INTRODUCTION 

The classical EOQ  inventory model has several basic assumptions that gives 

the solution of ordering as 
h

AR
Q

2
=  where R , A  and h  stands for demand, 

ordering cost and holding cost respectively. The most basic assumption is that 

all the parameters are constant and system receives same order as requisitioned. 

Several models have been developed in which either the demand rate or the 

purchase price may vary with time; namely, Goyal (1975), Buzacott (1975), 

Naddor (1976), Bardosa and Friedman (1978), Rash et al. (1976) Sivazlian and 

Stanfel (1975) etc. 

In all these papers, the parameter changes are continuous with time and only one 

parameter is permitted to change with the basic assumption that the quantity 

received matches with quantity ordered. But due to number of reasons, namely, 

inadequate raw material leading to a lower than the planned run quantity, 

exceptionally good production runs leading to a larger than planned quantity, 

due to shortage of man power, machines breakdown, failure of electricity, 

pilferage and / or damage in transit etc. 

Silver (1976) formulated model to include the case where the quantity received 

from the supplier may not necessarily match the quantity ordered. He 

established that the optimum order quantity to be dependent on the mean and 

variance of the amount ordered. Noori and Keller (1986) developed a model 

under price change anticipation under random input which was extended by 
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Trivedi, et al. (1994) for deteriorating items. In all the above models, again only 

the unit cost was permitted to change. 

In this paper, we consider EOQ  model in which any or all of the parameter/s 

may change at some point of time and the quantity received does not match with 

the quantity ordered. The system, we examine, has advantages over the 

established models. The main and the foremost is that a change in any of the 

costs is likely to affect the demand rate and we allow this. The second advantage 

is, that often, the times when prices will rise, are well known by announcement 

or by previous experience.  

In section 2, we develop a mathematical model and determine the necessary 

conditions for a policy to be optimal. In section 3, computational results for 

several sets of parameters with the help of hypothetical numerical illustration are 

presented. The concluding section 4 completers the article. 

2. MATHEMATICAL MODEL 

Let T  be the finite time horizon which is partitioned into two disjoint time 

periods: the closed interval ],0[ S  called period 1 and the open – closed interval 

],( TS  called period 2. 

The costs associated with period 1 are; unit cost 1C ; a holding cost 1h , for all 

items brought into the inventory; and set-up cost 1A , charged per order. The 

quantity received is −1Y units with mean 11)( QbYE =  and variance 

2
1

2
1

2
01)( QYV σσ +=  where 0>b  is a bias factor, 2

0σ  and 2
1σ  are non-negative 

constants and 1Q  is the actual quantity ordered during period 1. 

For the items brought into the stock during period 2, the unit cost, holding cost 

and set-up costs are 2C , 2h  and 2A  respectively. During this period retailer 

receives the quantity −2Y units with mean 22 )( QbYE =  and variance 

2
2

2
1

2
02 )( QYV σσ +=  where 0>b  is a bias factor, 2

0σ  and 2
1σ  are non-

negative constants and 2Q  is the actual quantity ordered. 

At S , a retailer receives a special order −aY units with mean aa QbYE =)(  and 

variance 22
1

2
0)( aa QYV σσ +=  where 0>b  is a bias factor, 2

0σ  and 2
1σ  are 

non-negative constants and aQ  is the actual quantity ordered. 

Let 1R  and 2R  be the demand rates during periods 1 and 2 respectively. A finite 

number of the orders are to be purchased to satisfy the demand. 

We assume that the initial inventory level is zero and the delivery is 

instantaneous. Of course, if there is any lead-time, the results of this article hold, 

but the orders are to be placed earlier according to the duration of the lead-time. 
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Following Silver (1976), the total average expected cost )(QZ  for a single order 

is given by 

 RQbhQCAQZ 2/])([)( 222
1

2
011 ++++= σσ  

Similar to Lev and Weiss (1993), it can be seen that an optimal policy must have 

the property that all the orders placed and depleted in period 1 and period 2 are 

of the same size. Thus, two consecutive orders placed and depleted during the 

same period are of the same size in either one of these two periods. 

Since the orders must be placed and depleted during the same period, crossing of 

two orders are not permitted. The inventory level is zero at S . Then the 

structure of the optimal policy is to place 0≥m  orders of size mSRQ /11 =  

during ),0[ S , place an order of size aQ , )(0 2 STRQa −≤≤  at S , and place 

0>n  orders of size nQSTRQ a /])([ 22 −−=  during period 2. 

The optimal number of orders to be placed for the finite time horizon inventory 

model with parameters R , h , A  and T  is given by Schwarz (1972) as the 

integer satisfying 

 )1(
2

)1(
2

+≤≤− nn
A

hRT
nn                (2.1) 

The right hand side inequality is 0
2

2
2

≥−+
A

hRT
nn , whose solution is 

 
A

hRT
n

24

1

2

1 2

++−≥  

The left inequality yields 
A

hRT
n

24

1

2

1 2

++≤ . Since n  is a positive integer 

 >++=<
A

hRT
n

24

1

2

1 2

 where >< x  denotes the least integer greater than 

or equal to x . Define an integer valued function as 

 
)(

2
),,,(

22
1

2
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2
0111

111
bRh

hRA
TAhRN

+

+
=

σ

σ
            (2.2) 

Hence, the optimal number of orders *mm =  to be placed during ),0[ S  is given 

by ),,,(* 111 SAhRNm =  and the optimal order size is */11 mSRQ = . The costs 

incurred in ],( TS are given by 
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where at  is the length of time it takes to deplete the order placed at S  and 

ntSTt a /)(2 −−= . 

Put STx −= . So ntxt a /)(2 −= . Then at  can be obtained by setting 

 0
),(

=
∂

∂

a

a

t

ntF
 i.e. 
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           (2.4) 

Also note that, if at  is given by equation (2.4) then )( atx −  is the time in which 

−n orders are placed. Thus )(* atxn −  represent the optimal number of orders 

to be placed in the second period; where following Lev, et al. (1979), the 

optimal value of *nn =  is given by 

 0)2()2( 2
221

2
2

2
121

23
=+−++++ hZhhhnhhhnn         (2.5) 

with 
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Hence, optimum value of order quantity aQ  at S  can be obtained and the total 

cost TC  is given by 

 btCR
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where 
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and optimum *mm =  can be found using equations (2.2) and (2.3). 
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3. COMPUTATIONAL ALGORITHM 

The sequential steps are as follows: 

1. Compute 1t  using (2.7) 

2. Using (2.3), obtain optimum number of orders *mm = . 

3. Obtain optimum *nn =  by (2.5). 

4. Calculate at  using (2.4). 

For obtained set )*,*,,( 1 atnmt , compute total cost, TC  using (2.6). 

Computational Results 

It is interesting to determine effect of varying the time horizon at which these 

parameters would have on the optimal policy. The effect of changes in b , 2
0σ  

and 2
1σ  are studied on total cost and optimum procurement quantities. Consider 

the following parametric values in appropriate units: 

]1,75.12,50.12,51,50,250,25,10000,5000[],,,,,,,,[ 21212121 =ShhCCAARR  

Table 1: 52
0 =σ  1.02

1 =σ  

b  

T  

 75.0  80.0  85.0  

aQ  1027 1019 1012 

at  0.254 0.204 0.203 

 

0.192 

TC  36504.65 38756.04 41011.97 

aQ  1235 1227 1224 

at  0.248 0.247 0.245 

 

0.231 

TC  43208.67 45963.79 48728.92 

aQ  1487 1476 1465 

at  0.298 0.295 0.293 

 

0.269 

TC  48188.66 51426.70 54686.64 
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Table 2: 75.0=b  1.02
1 =σ  

2
0σ  

T  

 0  5  10  

aQ  1027 1027 1027 

at  0.205 0.205 0.205 

 

0.192 

TC  35004.53 35004.58 35004.62 

aQ  1244 1244 1244 

at  0.248 0.248 0.248 

 

0.231 

TC  42212.52 42212.57 42212.61 

aQ  1487 1487 1487 

at  0.298 0.298 0.298 

 

0.269 

TC  49430.91 49430.95 49430.99 
 

Table 3: 52/10=T  1.02
1 =σ  

2
0σ  

b  

 0 5 10 

aQ  1027 1027 1027 

at  0.205 0.205 0.205 

 

0.75 

TC  35004.53 35004.58 35004.62 

aQ  1019 1019 1019 

at  0.204 0.204 0.204 

 

0.80 

TC  37270.66 37270.70 37270.75 

aQ  1012 1012 1012 

at  0.202 0.202 0.202 

 

0.85 

TC  39543.41 39543.45 39543.49 
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Table 4: 75.0=b  52
0 =σ  

2
1σ  

T  

 50.0  55.0  60.0  

aQ  963 959 954 

at  0.192 0.191 0.190 

 

0.192 

TC  35029.23 35095.52 35161.80 

aQ  1154 1150 1145 

at  0.230 0.230 0.229 

 

0.231 

TC  42740.30 42806.26 42872.23 

aQ  1345 1340 1336 

at  0.269 0.268 0.267 

 

0.269 

TC  49962.82 50029.30 50095.78 
 

Table 5: 52/10=T  52
0 =σ  

2
1σ  

b  

 50.0  55.0  60.0  

aQ  963 959 954 

at  0.1927 0.1918 0.1910 

 

0.75 

TC  35029.23 35095.52 35161.80 

aQ  963 958 954 

at  0.1926 0.1917 0.1910 

 

0.80 

TC  37261.68 37237.97 37394.25 

aQ  962 958 954 

at  0.1924 0.1916 0.1910 

 

0.85 

TC  39500.76 39567.76 39633.33 
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Table 6: 52/10=T  75.0=b  

2
1σ  

2
0σ  

 50.0  55.0  60.0  

aQ  963 959 954 

at  0.1927 0.1918 0.1909 

 

0.00 

TC  41746.43 41812.70 41878.99 

aQ  963 958 954 

at  0.1926 0.1918 0.1909 

 

5.00 

TC  41746.47 41812.75 41879.04 

aQ  963 959 954 

at  0.1927 0.1918 0.1902 

 

10.00 

TC  41746.51 41812.80 41879.08 
 

4. CONCLUSIONS 

Using the hypothetical numerical example, we have the following results: 

• From tables 1 and 2, we can conclude that with increase in time horizon 

)(T , the total cost increases. Keeping all other parameters constant, increase 

in bias factor b  results increase in total cost from tables 1 and 3. 

• In table 2, we are trying to measure the effect of parameter 2
0σ  on total cost. 

It can be seen that 2
0σ  does not affect aQ  and there is a negligible effect on 

total cost. Thus, we can say that the optimal order quantity for period at  as 

well as total cost are unaffected by the changes in the parameter 2
0σ . 

• Table 3 helps in evaluating the influence of the parameter 2
1σ on the optimal 

order quantity and total cost. From tables 4 and 5, it is observed that with 

increase in 2
1σ  there is increase in aQ  and total cost. Table 4 also highlights 

the facts that increase in 2
1σ  increases at , aQ  and total cost significantly. 
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• Table 6 depicts the effect of 2
0σ  and 2

1σ  on total cost. We see that total cost 

increases only when 2
1σ  changes while change in 2

0σ  does not bring 

significant change in total cost. 
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